Download
essd-16-1317-2024.pdf 8,65MB
WeightNameValue
1000 Titel
  • GPS displacement dataset for the study of elastic surface mass variations
1000 Autor/in
  1. Peidou, Athina |
  2. Argus, Donald F. |
  3. Landerer, Felix W. |
  4. Wiese, David N. |
  5. Ellmer, Matthias |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-14
1000 Erschienen in
1000 Quellenangabe
  • 16(3):1317-1332
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-1317-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Quantification of uncertainty in surface mass change signals derived from Global Positioning System (GPS) measurements poses challenges, especially when dealing with large datasets with continental or global coverage. We present a new GPS station displacement dataset that reflects surface mass load signals and their uncertainties. We assess the structure and quantify the uncertainty of vertical land displacement derived from 3045 GPS stations distributed across the continental US. Monthly means of daily positions are available for 15 years. We list the required corrections to isolate surface mass signals in GPS estimates and screen the data using GRACE(-FO) as external validation. Evaluation of GPS time series is a critical step, which identifies (a) corrections that were missed, (b) sites that contain non-elastic signals (e.g., close to aquifers), and (c) sites affected by background modeling errors (e.g., errors in the glacial isostatic model). Finally, we quantify uncertainty of GPS vertical displacement estimates through stochastic modeling and quantification of spatially correlated errors. Our aim is to assign weights to GPS estimates of vertical displacements, which will be used in a joint solution with GRACE(-FO). We prescribe white, colored, and spatially correlated noise. To quantify spatially correlated noise, we build on the common mode imaging approach by adding a geophysical constraint (i.e., surface hydrology) to derive an error estimate for the surface mass signal. We study the uncertainty of the GPS displacement time series and find an average noise level between 2 and 3 mm when white noise, flicker noise, and the root mean square (rms) of residuals about a seasonality and trend fit are used to describe uncertainty. Prescribing random walk noise increases the error level such that half of the stations have noise &gt; 4 mm, which is systematic with the noise level derived through modeling of spatially correlated noise. The new dataset is available at https://doi.org/10.5281/zenodo.8184285 (Peidou et al., 2023) and is suitable for use in a future joint solution with GRACE(-FO)-like observations. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGVpZG91LCBBdGhpbmE=|https://frl.publisso.de/adhoc/uri/QXJndXMsIERvbmFsZCBGLg==|https://frl.publisso.de/adhoc/uri/TGFuZGVyZXIsIEZlbGl4IFcu|https://frl.publisso.de/adhoc/uri/V2llc2UsIERhdmlkIE4u|https://frl.publisso.de/adhoc/uri/RWxsbWVyLCBNYXR0aGlhcw==
1000 Hinweis
  • DeepGreen-ID: 62209c300fc84d33832c7390bd19bad3 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Aeronautics and Space Administration |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Aeronautics and Space Administration |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480156.rdf
1000 Erstellt am 2024-05-23T12:36:36.604+0200
1000 Erstellt von 322
1000 beschreibt frl:6480156
1000 Zuletzt bearbeitet 2024-05-27T11:38:21.921+0200
1000 Objekt bearb. Mon May 27 11:38:21 CEST 2024
1000 Vgl. frl:6480156
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480156 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source