Download
nhess-23-3805-2023.pdf 8,17MB
WeightNameValue
1000 Titel
  • Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
1000 Autor/in
  1. Felsberg, Anne |
  2. Heyvaert, Zdenko |
  3. Poesen, Jean |
  4. Stanley, Thomas |
  5. De Lannoy, Gabriëlle J. M. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-14
1000 Erschienen in
1000 Quellenangabe
  • 23(12):3805-3821
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/nhess-23-3805-2023 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. In this study we present a model for the global Probabilistic Hydrological Estimation of LandSlides (PHELS). PHELS estimates the daily hazard of hydrologically triggered landslides at a coarse spatial resolution of 36 km, by combining landslide susceptibility (LSS) and (percentiles of) hydrological variable(s). The latter include daily rainfall, a 7 d antecedent rainfall index (ARI7) or root-zone soil moisture content (rzmc) as hydrological predictor variables, or the combination of rainfall and rzmc. The hazard estimates with any of these predictor variables have areas under the receiver operating characteristic curve (AUC) above 0.68. The best performance was found with combined rainfall and rzmc predictors (AUC = 0.79), which resulted in the lowest number of missed alarms (especially during spring) and false alarms. Furthermore, PHELS provides hazard uncertainty estimates by generating ensemble simulations based on repeated sampling of LSS and the hydrological predictor variables. The estimated hazard uncertainty follows the behaviour of the input variable uncertainties, is about 13.6 % of the estimated hazard value on average across the globe and in time and is smallest for very low and very high hazard values. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RmVsc2JlcmcsIEFubmU=|https://frl.publisso.de/adhoc/uri/SGV5dmFlcnQsIFpkZW5rbw==|https://frl.publisso.de/adhoc/uri/UG9lc2VuLCBKZWFu|https://frl.publisso.de/adhoc/uri/U3RhbmxleSwgVGhvbWFz|https://frl.publisso.de/adhoc/uri/RGUgTGFubm95LCBHYWJyacOrbGxlIEouIE0u
1000 Hinweis
  • DeepGreen-ID: 8ee0c4170d6c41d3a6ada415c3cd4a2c ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Fonds Wetenschappelijk Onderzoek |
  2. KU Leuven |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Fonds Wetenschappelijk Onderzoek |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer KU Leuven |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480212.rdf
1000 Erstellt am 2024-05-23T13:00:09.965+0200
1000 Erstellt von 322
1000 beschreibt frl:6480212
1000 Zuletzt bearbeitet 2024-05-27T09:29:42.431+0200
1000 Objekt bearb. Mon May 27 09:29:42 CEST 2024
1000 Vgl. frl:6480212
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480212 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source