Download
tc-18-2161-2024.pdf 6,37MB
WeightNameValue
1000 Titel
  • Improving short-term sea ice concentration forecasts using deep learning
1000 Autor/in
  1. Palerme, Cyril |
  2. Lavergne, Thomas |
  3. Rusin, Jozef |
  4. Melsom, Arne |
  5. Brajard, Julien |
  6. Kvanum, Are Frode |
  7. Macdonald Sørensen, Atle |
  8. Bertino, Laurent |
  9. Müller, Malte |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-30
1000 Erschienen in
1000 Quellenangabe
  • 18(4):2161-2176
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-2161-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Reliable short-term sea ice forecasts are needed to support maritime operations in polar regions. While sea ice forecasts produced by physically based models still have limited accuracy, statistical post-processing techniques can be applied to reduce forecast errors. In this study, post-processing methods based on supervised machine learning have been developed for improving the skill of sea ice concentration forecasts from the TOPAZ4 prediction system for lead times from 1 to 10 d. The deep learning models use predictors from TOPAZ4 sea ice forecasts, weather forecasts, and sea ice concentration observations. Predicting the sea ice concentration for the next 10 d takes about 4 min (including data preparation), which is reasonable in an operational context. On average, the forecasts from the deep learning models have a root mean square error 41 % lower than TOPAZ4 forecasts and 29 % lower than forecasts based on persistence of sea ice concentration observations. They also significantly improve the forecasts for the location of the ice edges, with similar improvements as for the root mean square error. Furthermore, the impact of different types of predictors (observations, sea ice, and weather forecasts) on the predictions has been evaluated. Sea ice observations are the most important type of predictors, and the weather forecasts have a much stronger impact on the predictions than sea ice forecasts. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGFsZXJtZSwgQ3lyaWw=|https://frl.publisso.de/adhoc/uri/TGF2ZXJnbmUsIFRob21hcw==|https://frl.publisso.de/adhoc/uri/UnVzaW4sIEpvemVm|https://frl.publisso.de/adhoc/uri/TWVsc29tLCBBcm5l|https://frl.publisso.de/adhoc/uri/QnJhamFyZCwgSnVsaWVu|https://frl.publisso.de/adhoc/uri/S3ZhbnVtLCBBcmXCoEZyb2Rl|https://frl.publisso.de/adhoc/uri/TWFjZG9uYWxkwqBTw7hyZW5zZW4sIEF0bGU=|https://frl.publisso.de/adhoc/uri/QmVydGlubywgTGF1cmVudA==|https://frl.publisso.de/adhoc/uri/TcO8bGxlciwgTWFsdGU=
1000 Hinweis
  • DeepGreen-ID: 20b120e75db645d2ab343991c889dd2e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480843.rdf
1000 Erstellt am 2024-05-23T17:13:26.679+0200
1000 Erstellt von 322
1000 beschreibt frl:6480843
1000 Zuletzt bearbeitet 2024-05-27T13:46:37.571+0200
1000 Objekt bearb. Mon May 27 13:46:37 CEST 2024
1000 Vgl. frl:6480843
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480843 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source