Download
essd-16-387-2024.pdf 12,40MB
WeightNameValue
1000 Titel
  • TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
1000 Autor/in
  1. Tang, Wenbin |
  2. Zhou, Ji |
  3. Ma, Jin |
  4. Wang, Ziwei |
  5. Ding, Lirong |
  6. Zhang, Xiaodong |
  7. Zhang, Xu |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-17
1000 Erschienen in
1000 Quellenangabe
  • 16(1):387-419
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-387-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Land surface temperature (LST) is a key variable within Earth's climate system and a necessary input parameter required by numerous land–atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, which contain many invalid pixels mainly caused by cloud contamination. To investigate the spatial and temporal variations in LST in China, long-term, high-quality, and spatiotemporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LSTs. Among satellite TIR LSTs, the MODIS LST is the most commonly used, and a few corresponding all-weather LST products have been reported recently. However, the publicly reported all-weather LSTs were not available during the temporal gaps of MODIS between 2000 and 2002. In this study, we generated a daily (four observations per day) 1 km all-weather LST dataset for China's landmass and surrounding areas, the Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless (TRIMS) LST, which begins on the first day of the new millennium (1 January 2000). We used the enhanced reanalysis and thermal infrared remote sensing merging (E-RTM) method to generate the TRIMS LST dataset with the temporal gaps being filled, which had not been achieved by the original RTM method. Specifically, we developed two novel approaches, i.e., the random-forest-based spatiotemporal merging (RFSTM) approach and the time-sequential LST-based reconstruction (TSETR) approach, respectively, to produce Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs during the temporal gaps. We also conducted a thorough evaluation of the TRIMS LST. A comparison with the Global Land Data Assimilation System (GLDAS) and ERA5-Land LST demonstrates that the TRIMS LST has similar spatial patterns but a higher image quality, more spatial details, and no evident spatial discontinuities. The results outside the temporal gap show consistent comparisons of the TRIMS LST with the MODIS LST and the Advanced Along-Track Scanning Radiometer (AATSR) LST, with a mean bias deviation (MBD) of 0.09/0.37 K and a standard deviation of bias (SD) of 1.45/1.55 K. Validation based on the in situ LST at 19 ground sites indicates that the TRIMS LST has a mean bias error (MBE) ranging from −2.26 to 1.73 K and a root mean square error (RMSE) ranging from 0.80 to 3.68 K. There is no significant difference between the clear-sky and cloudy conditions. For the temporal gap, it is observed that RFSTM and TSETR perform similarly to the original RTM method. Additionally, the differences between Aqua and Terra remain stable throughout the temporal gap. The TRIMS LST has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island modeling. The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021). </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VGFuZywgV2VuYmlu|https://frl.publisso.de/adhoc/uri/WmhvdSwgSmk=|https://frl.publisso.de/adhoc/uri/TWEsIEppbg==|https://frl.publisso.de/adhoc/uri/V2FuZywgWml3ZWk=|https://frl.publisso.de/adhoc/uri/RGluZywgTGlyb25n|https://frl.publisso.de/adhoc/uri/WmhhbmcsIFhpYW9kb25n|https://frl.publisso.de/adhoc/uri/WmhhbmcsIFh1
1000 Hinweis
  • DeepGreen-ID: 0e61d65eaa1d4ec790fff7635dc9e750 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6480879.rdf
1000 Erstellt am 2024-05-23T17:27:56.390+0200
1000 Erstellt von 322
1000 beschreibt frl:6480879
1000 Zuletzt bearbeitet 2024-05-27T10:10:53.740+0200
1000 Objekt bearb. Mon May 27 10:10:53 CEST 2024
1000 Vgl. frl:6480879
1000 Oai Id
  1. oai:frl.publisso.de:frl:6480879 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source