Download
nhess-24-309-2024.pdf 17,36MB
WeightNameValue
1000 Titel
  • Towards a global impact-based forecasting model for tropical cyclones
1000 Autor/in
  1. Kooshki Forooshani, Mersedeh |
  2. van den Homberg, Marc |
  3. Kalimeri, Kyriaki |
  4. Kaltenbrunner, Andreas |
  5. Mejova, Yelena |
  6. Milano, Leonardo |
  7. Ndirangu, Pauline |
  8. Paolotti, Daniela |
  9. Teklesadik, Aklilu |
  10. Turner, Monica L. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-01
1000 Erschienen in
1000 Quellenangabe
  • 24(1):309-329
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/nhess-24-309-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Tropical cyclones (TCs) produce strong winds and heavy rains accompanied by consecutive events such as landslides and storm surges, resulting in losses of lives and livelihoods, particularly in regions with high socioeconomic vulnerability. To proactively mitigate the impacts of TCs, humanitarian actors implement anticipatory action. In this work, we build upon such an existing anticipatory action for the Philippines, which uses an impact-based forecasting model for housing damage based on eXtreme Gradient Boosting (XGBoost) to release funding and trigger early action. We improve it in three ways. First, we perform a correlation and selection analysis to understand if Philippines-specific features can be left out or replaced with features from open global data sources. Secondly, we transform the target variable (percentage of completely damaged houses) and not yet grid-based global features to a 0.1∘ grid resolution by de-aggregation using Google Open Buildings data. Thirdly, we evaluate XGBoost regression models using different combinations of global and local features at grid and municipality spatial levels. We first introduce a two-stage model to predict if the damage is above 10 % and then use a regression model trained on all or only high-damage data. All experiments use data from 39 typhoons that impacted the Philippines between 2006–2020. Due to the scarcity and skewness of the training data, specific attention is paid to data stratification, sampling, and validation techniques. We demonstrate that employing only the global features does not significantly influence model performance. Despite excluding local data on physical vulnerability and storm surge susceptibility, the two-stage model improves upon the municipality-based model with local features. When applied to anticipatory action, our two-stage model would show a higher true-positive rate, a lower false-negative rate, and an improved false-positive rate, implying that fewer resources would be wasted in anticipatory action. We conclude that relying on globally available data sources and working at the grid level holds the potential to render a machine-learning-based impact model generalizable and transferable to locations outside of the Philippines impacted by TCs. Also, a grid-based model increases the resolution of the predictions, which may allow for a more targeted implementation of anticipatory action. However, it should be noted that an impact-based forecasting model can only be as good as the forecast skill of the TC forecast that goes into it. Future research will focus on replicating and testing the approach in other TC-prone countries. Ultimately, a transferable model will facilitate the scaling up of anticipatory action for TCs. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/S29vc2hracKgRm9yb29zaGFuaSwgTWVyc2VkZWg=|https://frl.publisso.de/adhoc/uri/dmFuwqBkZW7CoEhvbWJlcmcsIE1hcmM=|https://frl.publisso.de/adhoc/uri/S2FsaW1lcmksIEt5cmlha2k=|https://frl.publisso.de/adhoc/uri/S2FsdGVuYnJ1bm5lciwgQW5kcmVhcw==|https://frl.publisso.de/adhoc/uri/TWVqb3ZhLCBZZWxlbmE=|https://frl.publisso.de/adhoc/uri/TWlsYW5vLCBMZW9uYXJkbw==|https://frl.publisso.de/adhoc/uri/TmRpcmFuZ3UsIFBhdWxpbmU=|https://frl.publisso.de/adhoc/uri/UGFvbG90dGksIERhbmllbGE=|https://frl.publisso.de/adhoc/uri/VGVrbGVzYWRpaywgQWtsaWx1|https://frl.publisso.de/adhoc/uri/VHVybmVyLCBNb25pY2HCoEwu
1000 Hinweis
  • DeepGreen-ID: fb97d4000eb844479d9c2d3bc40bed8e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Fondazione CRT |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Towards a global impact-based forecasting model for tropical cyclones
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Fondazione CRT |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481073.rdf
1000 Erstellt am 2024-05-23T18:50:33.456+0200
1000 Erstellt von 322
1000 beschreibt frl:6481073
1000 Zuletzt bearbeitet 2024-05-27T10:33:40.128+0200
1000 Objekt bearb. Mon May 27 10:33:40 CEST 2024
1000 Vgl. frl:6481073
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481073 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source