Download
os-20-217-2024.pdf 17,87MB
WeightNameValue
1000 Titel
  • Linking satellites to genes with machine learning to estimate phytoplankton community structure from space
1000 Autor/in
  1. El Hourany, Roy |
  2. Pierella Karlusich, Juan |
  3. Zinger, Lucie |
  4. Loisel, Hubert |
  5. Levy, Marina |
  6. Bowler, Chris |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-21
1000 Erschienen in
1000 Quellenangabe
  • 20(1):217-239
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/os-20-217-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Ocean color remote sensing has been used for more than 2 decades to estimate primary productivity. Approaches have also been developed to disentangle phytoplankton community structure based on spectral data from space, in particular when combined with in situ measurements of photosynthetic pigments. Here, we propose a new ocean color algorithm to derive the relative cell abundance of seven phytoplankton groups, as well as their contribution to total chlorophyll a (Chl a) at the global scale. Our algorithm is based on machine learning and has been trained using remotely sensed parameters (reflectance, backscattering, and attenuation coefficients at different wavelengths, plus temperature and Chl a) combined with an omics-based biomarker developed using Tara Oceans data representing a single-copy gene encoding a component of the photosynthetic machinery that is present across all phytoplankton, including both prokaryotes and eukaryotes. It differs from previous methods which rely on diagnostic pigments to derive phytoplankton groups. Our methodology provides robust estimates of the phytoplankton community structure in terms of relative cell abundance and contribution to total Chl a concentration. The newly generated datasets yield complementary information about different aspects of phytoplankton that are valuable for assessing the contributions of different phytoplankton groups to primary productivity and inferring community assembly processes. This makes remote sensing observations excellent tools to collect essential biodiversity variables (EBVs) and provide a foundation for developing marine biodiversity forecasts. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RWzCoEhvdXJhbnksIFJveQ==|https://frl.publisso.de/adhoc/uri/UGllcmVsbGHCoEthcmx1c2ljaCwgSnVhbg==|https://frl.publisso.de/adhoc/uri/WmluZ2VyLCBMdWNpZQ==|https://frl.publisso.de/adhoc/uri/TG9pc2VsLCBIdWJlcnQ=|https://frl.publisso.de/adhoc/uri/TGV2eSwgTWFyaW5h|https://frl.publisso.de/adhoc/uri/Qm93bGVyLCBDaHJpcw==
1000 Hinweis
  • DeepGreen-ID: b67c4495d23f4a228ca533f7c56cafbd ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Centre National d’Etudes Spatiales |
  2. Sorbonne Université |
  3. H2020 European Research Council |
  4. Agence Nationale de la Recherche |
  5. Fonds Français pour l'Environnement Mondial |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Centre National d’Etudes Spatiales |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Sorbonne Université |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer H2020 European Research Council |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm -
    1000 Fördernummer -
  5. 1000 joinedFunding-child
    1000 Förderer Fonds Français pour l'Environnement Mondial |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481335.rdf
1000 Erstellt am 2024-05-23T20:39:07.655+0200
1000 Erstellt von 322
1000 beschreibt frl:6481335
1000 Zuletzt bearbeitet 2024-05-27T11:06:25.865+0200
1000 Objekt bearb. Mon May 27 11:06:25 CEST 2024
1000 Vgl. frl:6481335
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481335 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source