Download
hess-28-1351-2024.pdf 7,65MB
WeightNameValue
1000 Titel
  • Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
1000 Autor/in
  1. McGill, Lillian M. |
  2. Steel, E. Ashley |
  3. Fullerton, Aimee H. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-25
1000 Erschienen in
1000 Quellenangabe
  • 28(6):1351-1371
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-1351-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Climate change is modifying river temperature regimes across the world. To apply management interventions in an effective and efficient fashion, it is critical to both understand the underlying processes causing stream warming and identify the streams most and least sensitive to environmental change. Empirical stream thermal sensitivity, defined as the change in water temperature with a single degree change in air temperature, is a useful tool to characterize historical stream temperature conditions and to predict how streams might respond to future climate warming. We measured air and stream temperature across the Snoqualmie and Wenatchee basins, Washington, during the hydrologic years 2015–2021. We used ordinary least squares regression to calculate seasonal summary metrics of thermal sensitivity and time-varying coefficient models to derive continuous estimates of thermal sensitivity for each site. We then applied classification approaches to determine unique thermal sensitivity regimes and, further, to establish a link between environmental covariates and thermal sensitivity regimes. We found a diversity of thermal sensitivity responses across our basins that differed in both timing and magnitude of sensitivity. We also found that covariates describing underlying geology and snowmelt were the most important in differentiating clusters. Our findings and our approach can be used to inform strategies for river basin restoration and conservation in the context of climate change, such as identifying climate-insensitive areas of the basin that should be preserved and protected. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWNHaWxsLCBMaWxsaWFuIE0u|https://frl.publisso.de/adhoc/uri/U3RlZWwsIEUuIEFzaGxleQ==|https://frl.publisso.de/adhoc/uri/RnVsbGVydG9uLCBBaW1lZSBILg==
1000 Hinweis
  • DeepGreen-ID: b31f3bb36d0b4343bf0ad75baf237827 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Science Foundation |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481347.rdf
1000 Erstellt am 2024-05-23T20:44:11.249+0200
1000 Erstellt von 322
1000 beschreibt frl:6481347
1000 Zuletzt bearbeitet 2024-05-27T11:56:18.298+0200
1000 Objekt bearb. Mon May 27 11:56:18 CEST 2024
1000 Vgl. frl:6481347
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481347 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source