Download
hess-28-1665-2024.pdf 5,77MB
WeightNameValue
1000 Titel
  • Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
1000 Autor/in
  1. Zhu, Qian |
  2. Qin, Xiaodong |
  3. Zhou, Dongyang |
  4. Yang, Tiantian |
  5. Song, Xinyi |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-04-11
1000 Erschienen in
1000 Quellenangabe
  • 28(7):1665-1686
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-1665-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Accurate flood event simulation and prediction, enabled by effective models and reliable data, are critical for mitigating the potential risk of flood disaster. This study aims to investigate the impacts of spatiotemporal resolutions of precipitation on flood event simulation in a large-scale catchment of China. We use high-spatiotemporal-resolution Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) products and a gauge-based product as precipitation forcing for hydrologic simulation. Three hydrological models (HBV, SWAT and DHSVM) and a data-driven model (long short-term memory (LSTM) network) are utilized for flood event simulation. Two calibration strategies are carried out, one of which targets matching of the flood events, with peak discharge exceeding 8600 m3 s−1 between January 2015 and December 2017, and the other one is the conventional strategy for matching the entire streamflow time series. The results indicate that the event-based calibration strategy improves the performance of flood event simulation compared with a conventional calibration strategy, except for DHSVM. Both hydrological models and LSTM yield better flood event simulation at a finer temporal resolution, especially in flood peak simulation. Furthermore, SWAT and DHSVM are less sensitive to the spatial resolutions of IMERG, while the performance of LSTM obtains improvement when degrading the spatial resolution of IMERG-L. Generally, LSTM outperforms the hydrological models in most flood events, which implies the usefulness of the deep learning algorithms for flood event simulation. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Wmh1LCBRaWFu|https://frl.publisso.de/adhoc/uri/UWluLCBYaWFvZG9uZw==|https://frl.publisso.de/adhoc/uri/WmhvdSwgRG9uZ3lhbmc=|https://frl.publisso.de/adhoc/uri/WWFuZywgVGlhbnRpYW4=|https://frl.publisso.de/adhoc/uri/U29uZywgWGlueWk=
1000 Hinweis
  • DeepGreen-ID: 9fafd76e71114812b46864bc8872f8de ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481483.rdf
1000 Erstellt am 2024-05-23T21:44:25.780+0200
1000 Erstellt von 322
1000 beschreibt frl:6481483
1000 Zuletzt bearbeitet 2024-05-27T12:33:36.533+0200
1000 Objekt bearb. Mon May 27 12:33:36 CEST 2024
1000 Vgl. frl:6481483
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481483 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source