Download
hess-27-4187-2023.pdf 10,95MB
WeightNameValue
1000 Titel
  • A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
1000 Autor/in
  1. Li, Yuan |
  2. Xü, Kangning |
  3. Wu, Zhiyong |
  4. Zhu, Zhiwei |
  5. Wang, Quan J. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-11-21
1000 Erschienen in
1000 Quellenangabe
  • 27(22):4187-4203
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-27-4187-2023 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. In this study, we develop a spatial–temporal projection-based calibration, bridging, and merging (STP-CBaM) method to improve probabilistic sub-seasonal precipitation forecast skill over 17 hydroclimatic regions in China. The calibration model is established by post-processing ECMWF raw forecasts using the Bayesian joint probability (BJP) approach. The bridging models are built using large-scale atmospheric intraseasonal predictors, including zonal wind at 200 hPa (U200) and 850 hPa (U850); an outgoing longwave radiation anomaly (OLRA); and geopotential height at 200 hPa (H200), 500 hPa (H500), and 850 hPa (H850) defined by the STP method. The calibration model and the bridging models are then merged through the Bayesian modelling averaging (BMA) method. Our results indicate that the forecast skill of the calibration model is higher compared to bridging models when the lead time is within 5–10 d. The U200- and OLRA-based bridging models outperform the calibration model in certain months and certain regions. The BMA-merged forecasts take advantage of both calibration models and bridging models. Meanwhile, the BMA-merged forecasts also show high reliability at longer lead times. However, some improvements to reliability are still needed at shorter lead times. These findings demonstrate the great potential to combine dynamical models and statistical models in improving sub-seasonal precipitation forecasts. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGksIFl1YW4=|https://frl.publisso.de/adhoc/uri/WMO8LCBLYW5nbmluZw==|https://frl.publisso.de/adhoc/uri/V3UsIFpoaXlvbmc=|https://frl.publisso.de/adhoc/uri/Wmh1LCBaaGl3ZWk=|https://frl.publisso.de/adhoc/uri/V2FuZywgUXVhbsKgSi4=
1000 Hinweis
  • DeepGreen-ID: 648205723ece4398a7382a8d2080144a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Natural Science Foundation of China |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481687.rdf
1000 Erstellt am 2024-05-23T23:08:38.922+0200
1000 Erstellt von 322
1000 beschreibt frl:6481687
1000 Zuletzt bearbeitet 2024-05-27T08:55:42.109+0200
1000 Objekt bearb. Mon May 27 08:55:42 CEST 2024
1000 Vgl. frl:6481687
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481687 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source