Download
nhess-23-3723-2023.pdf 7,46MB
WeightNameValue
1000 Titel
  • Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
1000 Autor/in
  1. van Natijne, Adriaan L. |
  2. Bogaard, Thom A. |
  3. Zieher, Thomas |
  4. Pfeiffer, Jan |
  5. Lindenbergh, Roderik C. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-01
1000 Erschienen in
1000 Quellenangabe
  • 23(12):3723-3745
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/nhess-23-3723-2023 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope processes is required. Landslide modelling is typically based on data-rich geomechanical models. Recently, machine learning has shown promising results in modelling a variety of processes. Furthermore, slope conditions are now also monitored from space, in wide-area repeat surveys from satellites. In the present study we tested if use of machine learning, combined with readily available remote sensing data, allows us to build a deformation nowcasting model. A successful landslide deformation nowcast, based on remote sensing data and machine learning, would demonstrate effective understanding of the slope processes, even in the absence of physical modelling. We tested our methodology on the Vögelsberg, a deep-seated landslide near Innsbruck, Austria. Our results show that the formulation of such a machine learning system is not as straightforward as often hoped for. The primary issue is the freedom of the model compared to the number of acceleration events in the time series available for training, as well as inherent limitations of the standard quality metrics such as the mean squared error. Satellite remote sensing has the potential to provide longer time series, over wide areas. However, although longer time series of deformation and slope conditions are clearly beneficial for machine-learning-based analyses, the present study shows the importance of the training data quality but also that this technique is mostly applicable to the well-monitored, more dynamic deforming landslides. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/dmFuwqBOYXRpam5lLCBBZHJpYWFuwqBMLg==|https://frl.publisso.de/adhoc/uri/Qm9nYWFyZCwgVGhvbcKgQS4=|https://frl.publisso.de/adhoc/uri/WmllaGVyLCBUaG9tYXM=|https://frl.publisso.de/adhoc/uri/UGZlaWZmZXIsIEphbg==|https://frl.publisso.de/adhoc/uri/TGluZGVuYmVyZ2gsIFJvZGVyaWvCoEMu
1000 Hinweis
  • DeepGreen-ID: c00b62cfa2214e1c8cfbbd18c49e9f54 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Horizon 2020 |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6481899.rdf
1000 Erstellt am 2024-05-24T00:42:41.985+0200
1000 Erstellt von 322
1000 beschreibt frl:6481899
1000 Zuletzt bearbeitet 2024-05-27T09:13:06.641+0200
1000 Objekt bearb. Mon May 27 09:13:06 CEST 2024
1000 Vgl. frl:6481899
1000 Oai Id
  1. oai:frl.publisso.de:frl:6481899 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source