Download
hess-28-545-2024.pdf 12,87MB
WeightNameValue
1000 Titel
  • Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
1000 Autor/in
  1. Vlah, Michael J. |
  2. Ross, Matthew R. V. |
  3. Rhea, Spencer |
  4. Bernhardt, Emily S. |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-02-08
1000 Erschienen in
1000 Quellenangabe
  • 28(3):545-573
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-545-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are marked by anomalies related to sensor drift, gauge movement, and incomplete rating curves. Here, we investigate the potential to estimate continuous discharge when discrete streamflow measurements are available at the site of interest. Using field-measured discharge as truth, we reconstructed continuous discharge for all 27 NEON stream gauges via linear regression on nearby donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data. Reconstructions achieved median efficiencies of 0.83 (Nash–Sutcliffe, or NSE) and 0.81 (Kling–Gupta, or KGE) across all sites and improved KGE at 11 sites versus published data, with linear regression generally outperforming deep learning approaches due to the use of target site data for model fitting rather than evaluation only. Estimates from this analysis inform ∼199 site-months of missing data in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of NEON's stream data products. We provide 5 min composite discharge series for each site that combine the best estimates across modeling approaches and NEON's published data. The success of this effort demonstrates the potential to establish “virtual gauges”, sites at which continuous streamflow can be accurately estimated from discrete measurements, by transferring information from nearby donor gauges and/or large collections of training data. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VmxhaCwgTWljaGFlbCBKLg==|https://frl.publisso.de/adhoc/uri/Um9zcywgTWF0dGhldyBSLiBWLg==|https://frl.publisso.de/adhoc/uri/UmhlYSwgU3BlbmNlcg==|https://frl.publisso.de/adhoc/uri/QmVybmhhcmR0LCBFbWlsecKgUy4=
1000 Hinweis
  • DeepGreen-ID: 158eca1e98a94f1f8d4d28e82f8776c0 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Science Foundation |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6482303.rdf
1000 Erstellt am 2024-05-24T04:17:05.215+0200
1000 Erstellt von 322
1000 beschreibt frl:6482303
1000 Zuletzt bearbeitet 2024-05-27T10:44:29.348+0200
1000 Objekt bearb. Mon May 27 10:44:29 CEST 2024
1000 Vgl. frl:6482303
1000 Oai Id
  1. oai:frl.publisso.de:frl:6482303 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source