Download
bg-21-2297-2024.pdf 3,69MB
WeightNameValue
1000 Titel
  • Monitoring the impact of forest changes on carbon uptake with solar-induced fluorescence measurements from GOME-2A and TROPOMI for an Australian and Chinese case study
1000 Autor/in
  1. Anema, Juliëtte C. S. |
  2. Boersma, Klaas Folkert |
  3. Stammes, Piet |
  4. Koren, Gerbrand |
  5. Woodgate, William |
  6. Köhler, Philipp |
  7. Frankenberg, Christian |
  8. Stol, Jacqui |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-14
1000 Erschienen in
1000 Quellenangabe
  • 21(9):2297-2311
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/bg-21-2297-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Reliable and robust monitoring tools are crucial to assess the effectiveness of land mitigation techniques (LMTs) in enhancing carbon uptake, enabling informed decision making by policymakers. This study, addressing one of the scientific goals of the EU Horizon 2020 Land Use Based Mitigation for Resilient Climate Pathways (LANDMARC) project, examines the feasibility of using satellite solar-induced fluorescence (SIF) in combination with other satellite data as a monitoring proxy to evaluate the effects of LMTs on carbon uptake. Two distinct cases are explored: (1) instantaneous vegetation destruction caused by a 2019 eucalyptus wildfire in southeast Australia and (2) gradual forest gain resulting from reforestation efforts in northern China in 2007–2012. The cases are monitored using SIF from the TROPOspheric Monitoring Instrument (TROPOMI) and Global Ozone Monitoring Experiment-2A (GOME-2A), respectively. Comparing the temporal variability in SIF across the affected areas and nearby reference areas reveals that vegetation dynamics changed as a consequence of the land-use changes in both cases. Specifically, in the Australia case, TROPOMI demonstrated an immediate reduction in the SIF signal of 0.6 mW m−2 sr−1 nm−1 (−72 %) over the eucalypt forest right after the fire. Exploiting the strong correspondence between TROPOMI SIF and gross primary productivity (GPP) at the nearby representative eddy covariance Tumbarumba site and through the FluxSat product, we estimate that the Australian fire led to a loss in GPP of 130–200 GgC in the first 8 months after the fire. Over the northern Chinese provinces of Gansu, Shaanxi, Sichuan, Chongqing, and Shanxi, we report an increase in GOME-2A summertime SIF of 0.1–0.2 mW m−2 sr−1 nm−1, coinciding with reforestation efforts between 2007 and 2012. This increase in the SIF signal is likely driven by a combination of increasingly favourable natural conditions and by the reforestation effort itself. A multivariate model that takes into account growth factors such as water availability and maximum temperature as well as satellite-derived forest-cover data explains the observed variability in GOME-2A SIF in the Chinese case reasonably well (R2=0.72). The model suggests that increases in both forest cover and soil moisture have led, in step, to the observed increase in vegetation activity over northern China. In that region, for every 100 km2 of additional forest cover, SIF increases by 0.1 mW m−2 sr−1 nm−1 between 2007 and 2012. Our study highlights that the use of satellite-based SIF, together with supporting in situ, modelled, and satellite data, allows us to monitor the impact of LMT implementation on regional carbon uptake as long as the scale of the LMT is of sufficient spatial extent. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QW5lbWEsIEp1bGnDq3R0ZcKgQy7CoFMu|https://frl.publisso.de/adhoc/uri/Qm9lcnNtYSwgS2xhYXPCoEZvbGtlcnQ=|https://frl.publisso.de/adhoc/uri/U3RhbW1lcywgUGlldA==|https://frl.publisso.de/adhoc/uri/S29yZW4sIEdlcmJyYW5k|https://frl.publisso.de/adhoc/uri/V29vZGdhdGUsIFdpbGxpYW0=|https://frl.publisso.de/adhoc/uri/S8O2aGxlciwgUGhpbGlwcA==|https://frl.publisso.de/adhoc/uri/RnJhbmtlbmJlcmcsIENocmlzdGlhbg==|https://frl.publisso.de/adhoc/uri/U3RvbCwgSmFjcXVp
1000 Hinweis
  • DeepGreen-ID: 5bfe9a4b0f5d43988bb1e8928e931440 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Horizon 2020 |
  2. European Organization for the Exploitation of Meteorological Satellites |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Horizon 2020 |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer European Organization for the Exploitation of Meteorological Satellites |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6482477.rdf
1000 Erstellt am 2024-05-24T05:28:31.255+0200
1000 Erstellt von 322
1000 beschreibt frl:6482477
1000 Zuletzt bearbeitet 2024-05-27T14:12:47.500+0200
1000 Objekt bearb. Mon May 27 14:12:47 CEST 2024
1000 Vgl. frl:6482477
1000 Oai Id
  1. oai:frl.publisso.de:frl:6482477 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source