Download
s41747-023-00377-2.pdf 2,54MB
WeightNameValue
1000 Titel
  • Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
1000 Autor/in
  1. Dratsch, Thomas |
  2. Siedek, Florian |
  3. Zäske, Charlotte |
  4. Sonnabend, Kristina |
  5. Rauen, Philip |
  6. Terzis, Robert |
  7. Hahnfeldt, Robert |
  8. Maintz, David |
  9. Persigehl, Thorsten |
  10. Bratke, Grischa |
  11. Iuga, Andra |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-10-26
1000 Erschienen in
1000 Quellenangabe
  • 7(1):66
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41747-023-00377-2 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600091/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>To investigate the potential of combining compressed sensing (CS) and deep learning (DL) for accelerated two-dimensional (2D) and three-dimensional (3D) magnetic resonance imaging (MRI) of the shoulder.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Twenty healthy volunteers were examined using at 3-T scanner with a fat-saturated, coronal, 2D proton density-weighted sequence with four acceleration levels (2.3, 4, 6, and 8) and a 3D sequence with three acceleration levels (8, 10, and 13), all accelerated with CS and reconstructed using the conventional algorithm and a new DL-based algorithm (CS-AI). Subjective image quality was evaluated by two blinded readers using 6 criteria on a 5-point Likert scale (overall impression, artifacts, and delineation of the subscapularis tendon, bone, acromioclavicular joint, and glenoid labrum). Objective image quality was measured by calculating signal-to-noise-ratio, contrast-to-noise-ratio, and a structural similarity index measure. All reconstructions were compared to the clinical standard (CS 2D acceleration factor 2.3; CS 3D acceleration factor 8). Additionally, subjective and objective image quality were compared between CS and CS-AI with the same acceleration levels.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Both 2D and 3D sequences reconstructed with CS-AI achieved on average significantly better subjective and objective image quality compared to sequences reconstructed with CS with the same acceleration factor (<jats:italic>p</jats:italic> ≤ 0.011). Comparing CS-AI to the reference sequences showed that 4-fold acceleration for 2D sequences and 13-fold acceleration for 3D sequences without significant loss of quality (<jats:italic>p</jats:italic> ≥ 0.058).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>For MRI of the shoulder at 3 T, a DL-based algorithm allowed additional acceleration of acquisition times compared to the conventional approach.</jats:p> </jats:sec><jats:sec> <jats:title>Relevance statement</jats:title> <jats:p>The combination of deep-learning and compressed sensing hold the potential for further scan time reduction in 2D and 3D imaging of the shoulder while providing overall better objective and subjective image quality compared to the conventional approach.</jats:p> </jats:sec><jats:sec> <jats:title>Trial registration</jats:title> <jats:p>DRKS00024156.</jats:p> </jats:sec><jats:sec> <jats:title>Key points</jats:title> <jats:p>• Combination of compressed sensing and deep learning improved image quality and allows for significant acceleration of shoulder MRI.</jats:p> <jats:p>• Deep learning-based algorithm achieved better subjective and objective image quality than conventional compressed sensing.</jats:p> <jats:p>• For shoulder MRI at 3 T, 40% faster image acquisition for 2D sequences and 38% faster image acquisition for 3D sequences may be possible.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Deep Learning [MeSH]
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Original Article
lokal Artifacts
lokal Healthy Volunteers [MeSH]
lokal Shoulder joint
lokal Magnetic resonance imaging
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Imaging, Three-Dimensional/methods [MeSH]
lokal Deep learning
lokal Information and Computing Sciences
lokal Shoulder/diagnostic imaging [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-4014-7763|https://frl.publisso.de/adhoc/uri/U2llZGVrLCBGbG9yaWFu|https://frl.publisso.de/adhoc/uri/WsOkc2tlLCBDaGFybG90dGU=|https://frl.publisso.de/adhoc/uri/U29ubmFiZW5kLCBLcmlzdGluYQ==|https://frl.publisso.de/adhoc/uri/UmF1ZW4sIFBoaWxpcA==|https://frl.publisso.de/adhoc/uri/VGVyemlzLCBSb2JlcnQ=|https://frl.publisso.de/adhoc/uri/SGFobmZlbGR0LCBSb2JlcnQ=|https://frl.publisso.de/adhoc/uri/TWFpbnR6LCBEYXZpZA==|https://frl.publisso.de/adhoc/uri/UGVyc2lnZWhsLCBUaG9yc3Rlbg==|https://frl.publisso.de/adhoc/uri/QnJhdGtlLCBHcmlzY2hh|https://frl.publisso.de/adhoc/uri/SXVnYSwgQW5kcmE=
1000 Hinweis
  • DeepGreen-ID: 7539a1fafa584a419a1ddb223bfd5b8b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Gesellschaft für Muskuloskelettale Radiologie |
  2. Universitätsklinikum Köln |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Gesellschaft für Muskuloskelettale Radiologie |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Köln |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6484345.rdf
1000 Erstellt am 2024-10-02T11:54:17.355+0200
1000 Erstellt von 322
1000 beschreibt frl:6484345
1000 Zuletzt bearbeitet 2025-08-13T22:39:24.453+0200
1000 Objekt bearb. Wed Aug 13 22:39:24 CEST 2025
1000 Vgl. frl:6484345
1000 Oai Id
  1. oai:frl.publisso.de:frl:6484345 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source