Download
s41747-023-00360-x.pdf 2,02MB
WeightNameValue
1000 Titel
  • Automated localization and segmentation of cervical lymph nodes on contrast-enhanced CT using a 3D foveal fully convolutional neural network
1000 Autor/in
  1. Rinneburger, Miriam |
  2. Carolus, Heike |
  3. Iuga, Andra-Iza |
  4. Weisthoff, Mathilda |
  5. Lennartz, Simon |
  6. Hokamp, Nils Große |
  7. Caldeira, Liliana |
  8. Shahzad, Rahil |
  9. Maintz, David |
  10. Laqua, Fabian Christopher |
  11. Baeßler, Bettina |
  12. Klinder, Tobias |
  13. Persigehl, Thorsten |
1000 Verlag Springer Vienna
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-07-28
1000 Erschienen in
1000 Quellenangabe
  • 7(1):45
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s41747-023-00360-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382409/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>In the management of cancer patients, determination of TNM status is essential for treatment decision-making and therefore closely linked to clinical outcome and survival. Here, we developed a tool for automatic three-dimensional (3D) localization and segmentation of cervical lymph nodes (LNs) on contrast-enhanced computed tomography (CECT) examinations.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>In this IRB-approved retrospective single-center study, 187 CECT examinations of the head and neck region from patients with various primary diseases were collected from our local database, and 3656 LNs (19.5 ± 14.9 LNs/CECT, mean ± standard deviation) with a short-axis diameter (SAD) ≥ 5 mm were segmented manually by expert physicians. With these data, we trained an independent fully convolutional neural network based on 3D foveal patches. Testing was performed on 30 independent CECTs with 925 segmented LNs with an SAD ≥ 5 mm.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>In total, 4,581 LNs were segmented in 217 CECTs. The model achieved an average localization rate (LR), <jats:italic>i.e.</jats:italic>, percentage of localized LNs/CECT, of 78.0% in the validation dataset. In the test dataset, average LR was 81.1% with a mean Dice coefficient of 0.71. For enlarged LNs with a SAD ≥ 10 mm, LR was 96.2%. In the test dataset, the false-positive rate was 2.4 LNs/CECT.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Our trained AI model demonstrated a good overall performance in the consistent automatic localization and 3D segmentation of physiological and metastatic cervical LNs with a SAD ≥ 5 mm on CECTs. This could aid clinical localization and automatic 3D segmentation, which can benefit clinical care and radiomics research.</jats:p> </jats:sec><jats:sec> <jats:title>Relevance statement</jats:title> <jats:p>Our AI model is a time-saving tool for 3D segmentation of cervical lymph nodes on contrast-enhanced CT scans and serves as a solid base for N staging in clinical practice and further radiomics research.</jats:p> </jats:sec><jats:sec> <jats:title>Key points</jats:title> <jats:p>• Determination of N status in TNM staging is essential for therapy planning in oncology.</jats:p> <jats:p>• Segmenting cervical lymph nodes manually is highly time-consuming in clinical practice.</jats:p> <jats:p>• Our model provides a robust, automated 3D segmentation of cervical lymph nodes.</jats:p> <jats:p>• It achieves a high accuracy for localization especially of enlarged lymph nodes.</jats:p> <jats:p>• These segmentations should assist clinical care and radiomics research.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Lymph Nodes/pathology [MeSH]
lokal Humans [MeSH]
lokal Artificial intelligence
lokal Retrospective Studies [MeSH]
lokal Tomography (x-ray computed)
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Lymph Nodes/diagnostic imaging [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Original Article
lokal Neoplasm Staging [MeSH]
lokal Neoplasm staging
lokal Deep learning
lokal Lymph nodes
lokal Information and Computing Sciences
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-3980-931X|https://frl.publisso.de/adhoc/uri/Q2Fyb2x1cywgSGVpa2U=|https://frl.publisso.de/adhoc/uri/SXVnYSwgQW5kcmEtSXph|https://frl.publisso.de/adhoc/uri/V2Vpc3Rob2ZmLCBNYXRoaWxkYQ==|https://frl.publisso.de/adhoc/uri/TGVubmFydHosIFNpbW9u|https://frl.publisso.de/adhoc/uri/SG9rYW1wLCBOaWxzIEdyb8OfZQ==|https://frl.publisso.de/adhoc/uri/Q2FsZGVpcmEsIExpbGlhbmE=|https://frl.publisso.de/adhoc/uri/U2hhaHphZCwgUmFoaWw=|https://frl.publisso.de/adhoc/uri/TWFpbnR6LCBEYXZpZA==|https://frl.publisso.de/adhoc/uri/TGFxdWEsIEZhYmlhbiBDaHJpc3RvcGhlcg==|https://frl.publisso.de/adhoc/uri/QmFlw59sZXIsIEJldHRpbmE=|https://frl.publisso.de/adhoc/uri/S2xpbmRlciwgVG9iaWFz|https://frl.publisso.de/adhoc/uri/UGVyc2lnZWhsLCBUaG9yc3Rlbg==
1000 Hinweis
  • DeepGreen-ID: be469616c7ef4e4a971467ca82207805 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Universitätsklinikum Köln |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Köln |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6484347.rdf
1000 Erstellt am 2024-10-02T11:54:55.282+0200
1000 Erstellt von 322
1000 beschreibt frl:6484347
1000 Zuletzt bearbeitet 2025-08-13T13:36:34.699+0200
1000 Objekt bearb. Wed Aug 13 13:36:34 CEST 2025
1000 Vgl. frl:6484347
1000 Oai Id
  1. oai:frl.publisso.de:frl:6484347 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source