Download
s40478-022-01411-x.pdf 2,50MB
WeightNameValue
1000 Titel
  • Novel rapid intraoperative qualitative tumor detection by a residual convolutional neural network using label-free stimulated Raman scattering microscopy
1000 Autor/in
  1. Reinecke, David |
  2. von Spreckelsen, Niklas |
  3. Mawrin, Christian |
  4. Ion-Margineanu, Adrian |
  5. Fürtjes, Gina |
  6. Jünger, Stephanie T. |
  7. Khalid, Florian |
  8. Freudiger, Christian W. |
  9. Timmer, Marco |
  10. Ruge, Maximilian I. |
  11. Goldbrunner, Roland |
  12. Neuschmelting, Volker |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2022
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-08-06
1000 Erschienen in
1000 Quellenangabe
  • 10(1):109
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40478-022-01411-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356422/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (κ = 0.671). An excellent internal consistency was found among the random areas with 90.2% (Cα = 0.942) accuracy. In conclusion, the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a promising way for an alternative rapid intraoperative histopathological decision-making tool.</jats:p>
1000 Sacherschließung
lokal Disease Progression [MeSH]
lokal Humans [MeSH]
lokal Prospective Studies [MeSH]
lokal Artificial intelligence
lokal Radiopharmaceuticals [MeSH]
lokal Brain Neoplasms/surgery [MeSH]
lokal Neurosurgery
lokal Neurosurgical Procedures [MeSH]
lokal Neural Networks, Computer [MeSH]
lokal Tissue detection
lokal Stimulated Raman histology
lokal Brain tumor
lokal Research
lokal Brain Neoplasms/diagnostic imaging [MeSH]
lokal Deep learning
lokal Nonlinear Optical Microscopy [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3298-9517|https://frl.publisso.de/adhoc/uri/dm9uIFNwcmVja2Vsc2VuLCBOaWtsYXM=|https://frl.publisso.de/adhoc/uri/TWF3cmluLCBDaHJpc3RpYW4=|https://frl.publisso.de/adhoc/uri/SW9uLU1hcmdpbmVhbnUsIEFkcmlhbg==|https://frl.publisso.de/adhoc/uri/RsO8cnRqZXMsIEdpbmE=|https://frl.publisso.de/adhoc/uri/SsO8bmdlciwgU3RlcGhhbmllIFQu|https://frl.publisso.de/adhoc/uri/S2hhbGlkLCBGbG9yaWFu|https://frl.publisso.de/adhoc/uri/RnJldWRpZ2VyLCBDaHJpc3RpYW4gVy4=|https://frl.publisso.de/adhoc/uri/VGltbWVyLCBNYXJjbw==|https://frl.publisso.de/adhoc/uri/UnVnZSwgTWF4aW1pbGlhbiBJLg==|https://frl.publisso.de/adhoc/uri/R29sZGJydW5uZXIsIFJvbGFuZA==|https://frl.publisso.de/adhoc/uri/TmV1c2NobWVsdGluZywgVm9sa2Vy
1000 Hinweis
  • DeepGreen-ID: 46a4368489a24e85b2dd73493187b83e ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Köln |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Köln |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6484429.rdf
1000 Erstellt am 2024-10-02T12:29:23.315+0200
1000 Erstellt von 322
1000 beschreibt frl:6484429
1000 Zuletzt bearbeitet 2025-08-13T21:09:13.023+0200
1000 Objekt bearb. Wed Aug 13 21:09:13 CEST 2025
1000 Vgl. frl:6484429
1000 Oai Id
  1. oai:frl.publisso.de:frl:6484429 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source