Download
tc-18-4285-2024.pdf 5,75MB
WeightNameValue
1000 Titel
  • Multiscale modeling of heat and mass transfer in dry snow: influence of the condensation coefficient and comparison with experiments
1000 Autor/in
  1. Bouvet, Lisa |
  2. Calonne, Neige |
  3. Flin, Frederic |
  4. Geindreau, Christian |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-19
1000 Erschienen in
1000 Quellenangabe
  • 18(9):4285-4313
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-4285-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Temperature gradient metamorphism in dry snow is driven by heat and water vapor transfer through snow, which includes conduction/diffusion processes in both air and ice phases, as well as sublimation and deposition at the ice–air interface. The latter processes are driven by the condensation coefficient α, a poorly constrained parameter in the literature. In the present paper, we use an upscaling method to derive heat and mass transfer models at the snow layer scale for values of α in the range 10−10 to 1. A transition α value arises, of the order of 10−4, for typical snow microstructures (characteristic length ∼ 0.5 mm), such that the vapor transport is limited by sublimation–deposition below that value and by diffusion above it. Accordingly, different macroscopic models with specific domains of validity with respect to α values are derived. A comprehensive evaluation of the models is presented by comparison with three experimental datasets, as well as with pore-scale simulations using a simplified microstructure. The models reproduce the two main features of the experiments: the non-linear temperature profiles, with enhanced values in the center of the snow layer, and the mass transfer, with an abrupt basal mass loss. However, both features are underestimated overall by the models when compared to the experimental data. We investigate possible causes of these discrepancies and suggest potential improvements for the modeling of heat and mass transport in dry snow. </jats:p>
1000 Fächerklassifikation (DDC)
1000 Hinweis
  • DeepGreen-ID: 8c59f284f7304354995cfbc416658f4d ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Agence Nationale de la Recherche |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6484529.rdf
1000 Erstellt am 2024-10-02T15:00:47.367+0200
1000 Erstellt von 322
1000 beschreibt frl:6484529
1000 Zuletzt bearbeitet 2025-08-13T20:51:21.678+0200
1000 Objekt bearb. Wed Aug 13 20:51:21 CEST 2025
1000 Vgl. frl:6484529
1000 Oai Id
  1. oai:frl.publisso.de:frl:6484529 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source