Download
nhess-24-2923-2024.pdf 6,68MB
WeightNameValue
1000 Titel
  • Exploring the use of seasonal forecasts to adapt flood insurance premiums
1000 Autor/in
  1. Nguyen, Viet Dung |
  2. Aerts, Jeroen |
  3. Tesselaar, Max |
  4. Botzen, Wouter |
  5. Kreibich, Heidi |
  6. Alfieri, Lorenzo |
  7. Merz, Bruno |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-30
1000 Erschienen in
1000 Quellenangabe
  • 24(8):2923-2937
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/nhess-24-2923-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Insurance is an important element of flood risk management, providing financial compensation after disastrous losses. In a competitive market, insurers need to base their premiums on the most accurate risk estimation. To this end, (recent) historic loss data are used. However, climate variability can substantially affect flood risk, and anticipating such variations could provide a competitive gain. For instance, for a year with higher flood probabilities, the insurer might raise premiums to hedge against the increased risk or communicate the increased risk to policyholders, encouraging risk-reduction measures. In this explorative study, we investigate how seasonal flood forecasts could be used to adapt flood insurance premiums on an annual basis. In an application for Germany, we apply a forecasting method that predicts winter flood probability distributions conditioned on the catchment wetness in the season ahead. The deviation from the long term is used to calculate deviations in expected annual damage, which serve as input into an insurance model to compute deviations in household insurance premiums for the upcoming year. Our study suggests that the temporal variations in flood probabilities are substantial, leading to significant variations in flood risk and premiums. As our models are based on a range of assumptions and as the skill of seasonal flood forecasts is still limited, particularly in central Europe, our study is seen as the first demonstration of how seasonal forecasting could be combined with risk and insurance models to inform the (re-)insurance sector about upcoming changes in risk. </jats:p>
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-2649-2520|https://frl.publisso.de/adhoc/uri/QWVydHMsIEplcm9lbg==|https://frl.publisso.de/adhoc/uri/VGVzc2VsYWFyLCBNYXg=|https://frl.publisso.de/adhoc/uri/Qm90emVuLCBXb3V0ZXI=|https://orcid.org/0000-0001-6274-3625|https://orcid.org/0000-0002-3616-386X|https://orcid.org/0000-0002-5992-1440
1000 Hinweis
  • DeepGreen-ID: 2e65b750ebaa4a8296f0a7fbc2b9265f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6484805.rdf
1000 Erstellt am 2024-10-02T16:17:22.831+0200
1000 Erstellt von 322
1000 beschreibt frl:6484805
1000 Zuletzt bearbeitet 2025-08-13T17:22:15.749+0200
1000 Objekt bearb. Wed Aug 13 17:22:15 CEST 2025
1000 Vgl. frl:6484805
1000 Oai Id
  1. oai:frl.publisso.de:frl:6484805 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source