Download
hess-28-2661-2024.pdf 5,09MB
WeightNameValue
1000 Titel
  • A comprehensive framework for stochastic calibration and sensitivity analysis of large-scale groundwater models
1000 Autor/in
  1. Manzoni, Andrea |
  2. Porta, Giovanni Michele |
  3. Guadagnini, Laura |
  4. Guadagnini, Alberto |
  5. Riva, Monica |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-25
1000 Erschienen in
1000 Quellenangabe
  • 28(12):2661-2682
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-2661-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. We introduce a comprehensive and robust theoretical framework and operational workflow that can be employed to enhance our understanding, modeling and management capability of complex heterogeneous large-scale groundwater systems. Our framework encapsulates key components such as the three-dimensional nature of groundwater flows, river–aquifer interactions, probabilistic reconstruction of three-dimensional spatial distributions of geomaterials and associated properties across the subsurface, multi-objective optimization for model parameter estimation through stochastic calibration, and informed global sensitivity analysis (GSA). By integrating these components, we effectively consider the inherent uncertainty associated with subsurface system characterizations as well as their interactions with surface waterbodies. The approach enables us to identify parameters impacting diverse system responses. By employing a coevolutionary optimization algorithm, we ensure efficient model parameterization, facilitating simultaneous and informed optimization of the defined objective functions. Additionally, estimation of parameter uncertainty naturally leads to quantification of uncertainty in system responses. The methodology is designed to increase our knowledge of the dynamics of large-scale groundwater systems. It also has the potential to guide future data acquisition campaigns through an informed global sensitivity analysis. We demonstrate the effectiveness of our proposed methodology by applying it to the largest groundwater system in Italy. We address the challenges posed by the characterization of the heterogeneous spatial distribution of subsurface attributes across large-scale three-dimensional domains upon incorporating a recent probabilistic hydrogeological reconstruction specific to the study case. The system considered faces multiple challenges, including groundwater contamination, seawater intrusion, and water scarcity. Our study offers a promising modeling strategy applicable to large-scale subsurface systems and valuable insights into groundwater flow patterns that can then inform effective system management. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TWFuem9uaSwgQW5kcmVh|https://frl.publisso.de/adhoc/uri/UG9ydGEsIEdpb3Zhbm5pIE1pY2hlbGU=|https://frl.publisso.de/adhoc/uri/R3VhZGFnbmluaSwgTGF1cmE=|https://frl.publisso.de/adhoc/uri/R3VhZGFnbmluaSwgQWxiZXJ0bw==|https://frl.publisso.de/adhoc/uri/Uml2YSwgTW9uaWNh
1000 Hinweis
  • DeepGreen-ID: 9ef7ec01b02f4cc3b7a29dc54fc37cae ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Ministero dell'Università e della Ricerca |
  2. H2020 Marie Skłodowska-Curie Actions |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Ministero dell'Università e della Ricerca |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer H2020 Marie Skłodowska-Curie Actions |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6485057.rdf
1000 Erstellt am 2024-10-02T17:30:51.662+0200
1000 Erstellt von 322
1000 beschreibt frl:6485057
1000 Zuletzt bearbeitet 2024-10-04T10:07:51.459+0200
1000 Objekt bearb. Fri Oct 04 10:07:51 CEST 2024
1000 Vgl. frl:6485057
1000 Oai Id
  1. oai:frl.publisso.de:frl:6485057 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source