Download
s12885-022-09335-4.pdf 2,77MB
WeightNameValue
1000 Titel
  • Combining gene expression analysis of gastric cancer cell lines and tumor specimens to identify biomarkers for anti-HER therapies—the role of HAS2, SHB and HBEGF
1000 Autor/in
  1. Ebert, Karolin |
  2. Haffner, Ivonne |
  3. Zwingenberger, Gwen |
  4. Keller, Simone |
  5. Raimúndez, Elba |
  6. Geffers, Robert |
  7. Wirtz, Ralph |
  8. Barbaria, Elena |
  9. Hollerieth, Vanessa |
  10. Arnold, Rouven |
  11. Walch, Axel |
  12. Hasenauer, Jan |
  13. Maier, Dieter |
  14. Lordick, Florian |
  15. Luber, Birgit |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2022
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2022-03-09
1000 Erschienen in
1000 Quellenangabe
  • 22(1):254
1000 Copyrightjahr
  • 2022
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12885-022-09335-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908634/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The standard treatment for patients with advanced HER2-positive gastric cancer is a combination of the antibody trastuzumab and platin-fluoropyrimidine chemotherapy. As some patients do not respond to trastuzumab therapy or develop resistance during treatment, the search for alternative treatment options and biomarkers to predict therapy response is the focus of research. We compared the efficacy of trastuzumab and other HER-targeting drugs such as cetuximab and afatinib. We also hypothesized that treatment-dependent regulation of a gene indicates its importance in response and that it can therefore be used as a biomarker for patient stratification.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>A selection of gastric cancer cell lines (Hs746T, MKN1, MKN7 and NCI-N87) was treated with EGF, cetuximab, trastuzumab or afatinib for a period of 4 or 24 h. The effects of treatment on gene expression were measured by RNA sequencing and the resulting biomarker candidates were tested in an available cohort of gastric cancer patients from the VARIANZ trial or functionally analyzed in vitro.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>After treatment of the cell lines with afatinib, the highest number of regulated genes was observed, followed by cetuximab and trastuzumab. Although trastuzumab showed only relatively small effects on gene expression, <jats:italic>BMF</jats:italic>, <jats:italic>HAS2</jats:italic> and <jats:italic>SHB</jats:italic> could be identified as candidate biomarkers for response to trastuzumab. Subsequent studies confirmed <jats:italic>HAS2</jats:italic> and <jats:italic>SHB</jats:italic> as potential predictive markers for response to trastuzumab therapy in clinical samples from the VARIANZ trial. <jats:italic>AREG</jats:italic>, <jats:italic>EREG</jats:italic> and <jats:italic>HBEGF</jats:italic> were identified as candidate biomarkers for treatment with afatinib and cetuximab. Functional analysis confirmed that <jats:italic>HBEGF</jats:italic> is a resistance factor for cetuximab.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>By confirming <jats:italic>HAS2</jats:italic>, <jats:italic>SHB</jats:italic> and <jats:italic>HBEGF</jats:italic> as biomarkers for anti-HER therapies, we provide evidence that the regulation of gene expression after treatment can be used for biomarker discovery.</jats:p> <jats:p>Trial registration.</jats:p> <jats:p>Clinical specimens of the VARIANZ study (NCT02305043) were used to test biomarker candidates.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Gastric cancer
lokal Stomach Neoplasms/genetics [MeSH]
lokal Cell Line, Tumor [MeSH]
lokal Receptor, ErbB-2/drug effects [MeSH]
lokal Humans [MeSH]
lokal Hyaluronan Synthases/genetics [MeSH]
lokal Afatinib/pharmacology [MeSH]
lokal Gene Expression/drug effects [MeSH]
lokal HAS2
lokal Cetuximab/pharmacology [MeSH]
lokal Biomarker
lokal Adaptor Proteins, Signal Transducing/genetics [MeSH]
lokal Heparin-binding EGF-like Growth Factor/genetics [MeSH]
lokal Medical and Health Sciences
lokal Research
lokal Biomarkers, Tumor/genetics [MeSH]
lokal Drug Resistance, Neoplasm/genetics [MeSH]
lokal SHB
lokal Proto-Oncogene Proteins/genetics [MeSH]
lokal Stomach Neoplasms/drug therapy [MeSH]
lokal Gene expression
lokal Trastuzumab/pharmacology [MeSH]
lokal HBEGF
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RWJlcnQsIEthcm9saW4=|https://frl.publisso.de/adhoc/uri/SGFmZm5lciwgSXZvbm5l|https://frl.publisso.de/adhoc/uri/WndpbmdlbmJlcmdlciwgR3dlbg==|https://frl.publisso.de/adhoc/uri/S2VsbGVyLCBTaW1vbmU=|https://frl.publisso.de/adhoc/uri/UmFpbcO6bmRleiwgRWxiYQ==|https://frl.publisso.de/adhoc/uri/R2VmZmVycywgUm9iZXJ0|https://frl.publisso.de/adhoc/uri/V2lydHosIFJhbHBo|https://frl.publisso.de/adhoc/uri/QmFyYmFyaWEsIEVsZW5h|https://frl.publisso.de/adhoc/uri/SG9sbGVyaWV0aCwgVmFuZXNzYQ==|https://frl.publisso.de/adhoc/uri/QXJub2xkLCBSb3V2ZW4=|https://frl.publisso.de/adhoc/uri/V2FsY2gsIEF4ZWw=|https://frl.publisso.de/adhoc/uri/SGFzZW5hdWVyLCBKYW4=|https://frl.publisso.de/adhoc/uri/TWFpZXIsIERpZXRlcg==|https://frl.publisso.de/adhoc/uri/TG9yZGljaywgRmxvcmlhbg==|https://frl.publisso.de/adhoc/uri/THViZXIsIEJpcmdpdA==
1000 Hinweis
  • DeepGreen-ID: db2e4e2ea6f2433bb1d2d351f4b72b57 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Technische Universität München |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Technische Universität München |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486104.rdf
1000 Erstellt am 2024-10-03T00:04:07.695+0200
1000 Erstellt von 322
1000 beschreibt frl:6486104
1000 Zuletzt bearbeitet 2025-08-13T14:32:20.984+0200
1000 Objekt bearb. Wed Aug 13 14:32:20 CEST 2025
1000 Vgl. frl:6486104
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486104 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source