Download
essd-16-3495-2024.pdf 5,15MB
WeightNameValue
1000 Titel
  • Global Emissions Inventory from Open Biomass Burning (GEIOBB): utilizing Fengyun-3D global fire spot monitoring data
1000 Autor/in
  1. Liu, Yang |
  2. Chen, Jie |
  3. Shi, Yusheng |
  4. Zheng, Wei |
  5. Shan, Tianchan |
  6. Wang, Gang |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-02
1000 Erschienen in
1000 Quellenangabe
  • 16(8):3495-3515
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-3495-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Open biomass burning (OBB) significantly affects regional and global air quality, the climate, and human health. The burning of forests, shrublands, grasslands, peatlands, and croplands influences OBB. A global emissions inventory based on satellite fire detection enables an accurate estimation of OBB emissions. In this study, we developed a global high-resolution (1 km×1 km) daily OBB emission inventory using the Chinese Fengyun-3D satellite's global fire spot monitoring data, satellite-derived biomass data, vegetation-index-derived spatiotemporally variable combustion efficiencies, and land-type-based emission factors. The average annual estimated OBB emissions for 2020–2022 were 2586.88 Tg C, 8841.45 Tg CO2, 382.96 Tg CO, 15.83 Tg CH4, 18.42 Tg NOx, 4.07 Tg SO2, 18.68 Tg particulate organic carbon (OC), 3.77 Tg particulate black carbon (BC), 5.24 Tg NH3, 15.85 Tg NO2, 42.46 Tg PM2.5 and 56.03 Tg PM10. Specifically, taking carbon emissions as an example, the average annual estimated OBBs for 2020–2022 were 72.71 (Boreal North America, BONA), 165.73 (Temperate North America, TENA), 34.11 (Central America, CEAM), 42.93 (Northern Hemisphere South America, NHSA), 520.55 (Southern Hemisphere South America, SHSA), 13.02 (Europe, EURO), 8.37 (Middle East, MIDE), 394.25 (Northern Hemisphere Africa, NHAF), 847.03 (Southern Hemisphere Africa, SHAF), 167.35 (Boreal Asia, BOAS), 27.93 (Central Asia, CEAS), 197.29 (Southeast Asia, SEAS), 13.20 (Equatorial Asia; EQAS), and 82.38 (Australia and New Zealand; AUST) Tg C yr−1. Overall, savanna grassland burning contributed the largest proportion of the annual total carbon emissions (1209.12 Tg C yr−1; 46.74 %), followed by woody savanna/shrubs (33.04 %) and tropical forests (12.11 %). SHAF was found to produce the most carbon emissions globally (847.04 Tg C yr−1), followed by SHSA (525.56 Tg C yr−1), NHAF (394.26 Tg C yr−1), and SEAS (197.30 Tg C yr−1). More specifically, savanna grassland burning was predominant in SHAF (55.00 %, 465.86 Tg C yr−1), SHSA (43.39 %, 225.86 Tg C yr−1), and NHAF (76.14 %, 300.21 Tg C yr−1), while woody savanna/shrub fires were dominant in SEAS (51.48 %, 101.57 Tg C yr−1). Furthermore, carbon emissions exhibited significant seasonal variability, peaking in September 2020 and August of 2021 and 2022, with an average of 441.32 Tg C month−1, which is substantially higher than the monthly average of 215.57 Tg C month−1. Our comprehensive high-resolution inventory of OBB emissions provides valuable insights for enhancing the accuracy of air quality modeling, atmospheric transport, and biogeochemical cycle studies. The GEIOBB dataset can be downloaded at http://figshare.com (last access: 30 July 2024) with the following DOI: https://doi.org/10.6084/m9.figshare.24793623.v2 (Liu et al., 2023). </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TGl1LCBZYW5n|https://frl.publisso.de/adhoc/uri/Q2hlbiwgSmll|https://frl.publisso.de/adhoc/uri/U2hpLCBZdXNoZW5n|https://frl.publisso.de/adhoc/uri/WmhlbmcsIFdlaQ==|https://frl.publisso.de/adhoc/uri/U2hhbiwgVGlhbmNoYW4=|https://frl.publisso.de/adhoc/uri/V2FuZywgR2FuZw==
1000 Hinweis
  • DeepGreen-ID: 6e4212f4d56241ad897cb2d04931e5ae ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Key Research and Development Program of China |
  2. National Natural Science Foundation of China |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Key Research and Development Program of China |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486116.rdf
1000 Erstellt am 2024-10-03T00:07:38.510+0200
1000 Erstellt von 322
1000 beschreibt frl:6486116
1000 Zuletzt bearbeitet 2024-10-04T13:49:08.336+0200
1000 Objekt bearb. Fri Oct 04 13:49:08 CEST 2024
1000 Vgl. frl:6486116
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486116 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source