Download
tc-18-3933-2024.pdf 35,07MB
WeightNameValue
1000 Titel
  • AWI-ICENet1: a convolutional neural network retracker for ice altimetry
1000 Autor/in
  1. Helm, Veit |
  2. Dehghanpour, Alireza |
  3. Hänsch, Ronny |
  4. Loebel, Erik |
  5. Horwath, Martin |
  6. Humbert, Angelika |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-04
1000 Erschienen in
1000 Quellenangabe
  • 18(9):3933-3970
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-3933-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. The Greenland and Antarctic ice sheets are important indicators of climate change and major contributors to sea level rise. Hence, precise, long-term observations of ice mass change are required to assess their contribution to sea level rise. Such observations can be achieved through three different methods. They can be achieved directly by measuring regional changes in the Earth's gravity field using the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) satellite system. Alternatively, they can be achieved indirectly by measuring changes in ice thickness using satellite altimetry or by estimating changes in the mass budget using a combination of regional climate model data and ice discharge across the grounding line, based on multi-sensor satellite radar observations of ice velocity (Hanna et al., 2013). Satellite radar altimetry has been used to measure elevation change since 1992 through a combination of various missions. In addition to the surface slope and complex topography, it has been shown that one of the most challenging issues concerns spatial and temporal variability in radar pulse penetration into the snowpack. This results in an inaccurate measurement of the true surface elevation and consequently affects surface elevation change (SEC) estimates. To increase the accuracy of surface elevation measurements retrieved by retracking the radar return waveform and thus reduce the uncertainty in the SEC, we developed a deep convolutional-neural-network architecture (AWI-ICENet1). AWI-ICENet1 is trained using a simulated reference data set with 3.8 million waveforms, taking into account different surface slopes, topography, and attenuation. The successfully trained network is finally applied as an AWI-ICENet1 retracker to the full time series of CryoSat-2 Low Resolution Mode (LRM) waveforms over both ice sheets. We compare the AWI-ICENet1-retrieved SEC with estimates from conventional retrackers, including the threshold first-maximum retracker algorithm (TFMRA) and the European Space Agency's (ESA) ICE1 and ICE2 products. Our results show less uncertainty and a great decrease in the effect of time-variable radar penetration, reducing the need for corrections based on its close relationship with backscatter and/or leading-edge width, which are typically used in SEC processing. This technique provides new opportunities to utilize convolutional neural networks in the processing of satellite altimetry data and is thus applicable to historical, recent, and future missions. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SGVsbSwgVmVpdA==|https://frl.publisso.de/adhoc/uri/RGVoZ2hhbnBvdXIsIEFsaXJlemE=|https://frl.publisso.de/adhoc/uri/SMOkbnNjaCwgUm9ubnk=|https://frl.publisso.de/adhoc/uri/TG9lYmVsLCBFcmlr|https://frl.publisso.de/adhoc/uri/SG9yd2F0aCwgTWFydGlu|https://frl.publisso.de/adhoc/uri/SHVtYmVydCwgQW5nZWxpa2E=
1000 Hinweis
  • DeepGreen-ID: 4e2c6a405bc94d59ac8df05324165636 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Helmholtz Artificial Intelligence Cooperation Unit |
  3. Helmholtz Association |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Helmholtz Artificial Intelligence Cooperation Unit |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Helmholtz Association |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486567.rdf
1000 Erstellt am 2024-10-03T02:31:40.604+0200
1000 Erstellt von 322
1000 beschreibt frl:6486567
1000 Zuletzt bearbeitet 2024-10-04T10:58:46.599+0200
1000 Objekt bearb. Fri Oct 04 10:58:46 CEST 2024
1000 Vgl. frl:6486567
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486567 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source