Download
tc-18-3787-2024.pdf 8,72MB
WeightNameValue
1000 Titel
  • Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
1000 Autor/in
  1. Herny, Clémence |
  2. Hagenmuller, Pascal |
  3. Chambon, Guillaume |
  4. Peinke, Isabel |
  5. Roulle, Jacques |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-23
1000 Erschienen in
1000 Quellenangabe
  • 18(8):3787-3805
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-3787-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Snow is a complex porous material presenting a variety of microstructural patterns. This microstructure largely controls the mechanical properties of snow, although the relation between the micro and macro properties remains to be better understood. Recent developments based on the discrete element method (DEM) and three-dimensional microtomographic data make it possible to reproduce numerically the brittle mechanical behaviour of snow. However, these developments lack experimental evaluation so far. In this study, we evaluate a DEM numerical model by reproducing cone penetration tests on centimetric snow samples. The microstructures of different natural snow samples were captured with X-ray microtomography before and after the cone penetration test, from which the grain displacements induced by the cone could be inferred. The tests were conducted with a modified snow micropenetrometer (5 mm cone diameter), which recorded the force profile at a high resolution. In the numerical model, an elastic–brittle cohesive contact law between snow grains was used to represent the cohesive bonds. The initial positions of the grains and their contacts were directly derived from the tomographic images. The numerical model was evaluated by comparing the measured force profiles and the grain displacement fields. Overall, the model satisfactorily reproduced the force profiles in terms of mean macroscopic force (mean relative error of about 20 %) and the amplitude of force fluctuations (mean relative error of about 55 %), while the correlation length of force fluctuations was more difficult to reproduce (mean relative error of about 40 % for two samples out of four and by a factor ≥ 8 for the other two). These characteristics were, as expected, highly dependent on the tested sample microstructure, but they were also sensitive to the choice of the micromechanical parameters describing the contact law. A scaling law was proposed between the mechanical parameters, the initial microstructure characteristics and the mean macroscopic force obtained with the DEM numerical model. The model could also reproduce the measured deformation around the cone tip (mean grain displacement relative error of 57 % along the horizontal axis), with a smaller sensitivity to the contact law parameterisation in this case. These detailed comparisons between numerical and experimental results give confidence to the reliability of the numerical modelling strategy and opens promising prospects to improve the understanding of snow mechanical behaviour. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/SGVybnksIENsw6ltZW5jZQ==|https://frl.publisso.de/adhoc/uri/SGFnZW5tdWxsZXIsIFBhc2NhbA==|https://frl.publisso.de/adhoc/uri/Q2hhbWJvbiwgR3VpbGxhdW1l|https://frl.publisso.de/adhoc/uri/UGVpbmtlLCBJc2FiZWw=|https://frl.publisso.de/adhoc/uri/Um91bGxlLCBKYWNxdWVz
1000 Hinweis
  • DeepGreen-ID: 086651457dcc4916881ecd7bf0a8fa44 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Centre National de la Recherche Scientifique |
  2. Agence Nationale de la Recherche |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Centre National de la Recherche Scientifique |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486709.rdf
1000 Erstellt am 2024-10-03T03:15:43.631+0200
1000 Erstellt von 322
1000 beschreibt frl:6486709
1000 Zuletzt bearbeitet 2024-10-04T15:10:00.577+0200
1000 Objekt bearb. Fri Oct 04 15:10:00 CEST 2024
1000 Vgl. frl:6486709
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486709 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source