Download
tc-18-3277-2024.pdf 6,09MB
WeightNameValue
1000 Titel
  • Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
1000 Autor/in
  1. Harder, Phillip |
  2. Helgason, Warren |
  3. Pomeroy, John W. |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-23
1000 Erschienen in
1000 Quellenangabe
  • 18(7):3277-3295
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-3277-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Despite decades of effort, there remains an inability to measure snow water equivalent (SWE) at high spatial resolutions using remote sensing. Passive gamma ray spectrometry is one of the only well-established methods to reliably remotely sense SWE, but airborne applications to date have been limited to observing kilometre-scale areal averages. Noting the increasing capabilities of unoccupied aerial vehicles (UAVs) and miniaturization of passive gamma ray spectrometers, this study tested the ability of a UAV-borne gamma spectrometer and concomitant UAV-borne lidar to quantify the spatial variability of SWE at high spatial resolutions. Gamma and lidar observations from a UAV (UAV-gamma and UAV-lidar) were collected over two seasons from shallow, wind-blown, prairie snowpacks in Saskatchewan, Canada, with validation data collected from manual snow depth and density observations. A fine-resolution (0.25 m) reference dataset of SWE, to test UAV-gamma methods, was developed from UAV-lidar snow depth and snow survey snow density observations. The ability of UAV-gamma to resolve the areal average and spatial variability of SWE was promising with appropriate flight characteristics. Survey flights flown at a velocity of 5 m s−1, altitude of 15 m, and line spacing of 15 m were unable to capture the average or spatial variability of SWE within the uncertainty of the reference dataset. Slower, lower, and denser flight lines at a velocity of 4 m s−1, altitude of 8 m, and line spacing of 8 m were able to successfully observe areal average SWE and its variability at spatial resolutions greater than 22.5 m. Using a combination of UAV-based gamma SWE and UAV-based lidar snow depth improved the spatial representation of SWE substantially and permitted estimation of SWE at a spatial resolution 0.25 m with a ± 14.3 mm error relative to the reference SWE dataset. UAV-borne gamma spectrometry to estimate SWE is a promising and novel technique that has the potential to improve the measurement of shallow prairie snowpacks, and when combined with UAV-borne lidar snow depths, can provide fine-resolution, high-accuracy estimates of prairie SWE. Research on optimal hardware, data processing, and interpolation techniques is called for to further improve this remote sensing product and explore its application in other environments. </jats:p>
1000 Fächerklassifikation (DDC)
1000 Hinweis
  • DeepGreen-ID: 51221cfbc75e4ee1858e9e2a4b57a0b2 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Canada First Research Excellence Fund |
  2. Natural Sciences and Engineering Research Council of Canada |
  3. Western Economic Diversification Canada |
  4. Canada Foundation for Innovation |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Canada First Research Excellence Fund |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Natural Sciences and Engineering Research Council of Canada |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Western Economic Diversification Canada |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Canada Foundation for Innovation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6486987.rdf
1000 Erstellt am 2024-10-03T04:32:24.014+0200
1000 Erstellt von 322
1000 beschreibt frl:6486987
1000 Zuletzt bearbeitet 2025-08-13T20:15:44.252+0200
1000 Objekt bearb. Wed Aug 13 20:15:44 CEST 2025
1000 Vgl. frl:6486987
1000 Oai Id
  1. oai:frl.publisso.de:frl:6486987 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source