Download
essd-16-3125-2024.pdf 13,79MB
WeightNameValue
1000 Titel
  • A daily reconstructed chlorophyll-<i>a</i> dataset in the South China Sea from MODIS using OI-SwinUnet
1000 Autor/in
  1. Ye, Haibin |
  2. Yang, Chaoyu |
  3. Dong, Yuan |
  4. Tang, Shilin |
  5. Chen, Chuqun |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-04
1000 Erschienen in
1000 Quellenangabe
  • 16(7):3125-3147
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/essd-16-3125-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Satellite remote sensing of sea surface chlorophyll products sometimes yields a significant amount of sporadic missing data due to various variables, such as weather conditions and operational failures of satellite sensors. The limited nature of satellite observation data impedes the utilization of satellite data in the domain of marine research. Hence, it is highly important to investigate techniques for reconstructing satellite remote sensing data to obtain spatially and temporally uninterrupted and comprehensive data within the desired area. This approach will expand the potential applications of remote sensing data and enhance the efficiency of data usage. To address this series of problems, based on the demand for research on the ecological effects of multiscale dynamic processes in the South China Sea, this paper combines the advantages of the optimal interpolation (OI) method and SwinUnet and successfully develops a deep-learning model based on the expected variance in data anomalies, called OI-SwinUnet. The OI-SwinUnet method was used to reconstruct the MODIS chlorophyll-a concentration products of the South China Sea from 2013 to 2017. When comparing the performances of the data-interpolating empirical orthogonal function (DINEOF), OI, and Unet approaches, it is evident that the OI-SwinUnet algorithm outperforms the other algorithms in terms of reconstruction. We conduct a reconstruction experiment using different artificial missing patterns to assess the resilience of OI-SwinUnet. Ultimately, the reconstructed dataset was utilized to examine the seasonal variations and geographical distribution of chlorophyll-a concentrations in various regions of the South China Sea. Additionally, the impact of the plume front on the dispersion of phytoplankton in upwelling areas was assessed. The potential use of reconstructed products to investigate the process by which individual mesoscale eddies affect sea surface chlorophyll is also examined. The reconstructed daily chlorophyll-a dataset is freely accessible at https://doi.org/10.5281/zenodo.10478524 (Ye et al., 2024). </jats:p>
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WWUsIEhhaWJpbg==|https://frl.publisso.de/adhoc/uri/WWFuZywgQ2hhb3l1|https://frl.publisso.de/adhoc/uri/RG9uZywgWXVhbg==|https://frl.publisso.de/adhoc/uri/VGFuZywgU2hpbGlu|https://frl.publisso.de/adhoc/uri/Q2hlbiwgQ2h1cXVu
1000 Hinweis
  • DeepGreen-ID: d63b9016a4c143aca0ff615e09a3f49b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6487712.rdf
1000 Erstellt am 2024-10-03T08:07:18.728+0200
1000 Erstellt von 322
1000 beschreibt frl:6487712
1000 Zuletzt bearbeitet 2025-08-13T12:43:30.518+0200
1000 Objekt bearb. Wed Aug 13 12:43:30 CEST 2025
1000 Vgl. frl:6487712
1000 Oai Id
  1. oai:frl.publisso.de:frl:6487712 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source