Download
tc-18-2875-2024.pdf 25,43MB
WeightNameValue
1000 Titel
  • Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
1000 Autor/in
  1. Riedel, Christopher |
  2. Anderson, Jeffrey |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-21
1000 Erschienen in
1000 Quellenangabe
  • 18(6):2875-2896
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-2875-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. The Arctic is warming at a faster rate compared to the globe on average, a phenomenon commonly referred to as Arctic amplification. Sea ice has been linked to Arctic amplification and has gathered attention recently due to the decline in summer sea ice extent. Data assimilation (DA) is the act of combining observations with prior forecasts to obtain a more accurate model state. Sea ice poses a unique challenge for DA because sea ice variables have bounded distributions, leading to non-Gaussian distributions. The non-Gaussian nature violates the Gaussian assumptions built into DA algorithms. This study presents different observing system simulation experiments (OSSEs), which will provide a data assimilating testing framework through experimental observation networks and synthetic observations. The OSSE framework will help determine the best data assimilation configuration for assimilating sea ice and snow observations. Findings indicate that assimilating both sea ice thickness and snow depth observations while omitting sea ice concentration observations produced the best sea ice and snow forecasts in our idealized experimental setup. A simplified DA experiment helped demonstrate that the DA solution is biased when assimilating sea ice concentration observations. The biased DA solution is related to the observation error distribution being a truncated normal distribution, and the assumed observation likelihood is normal for the DA method. Additional OSSEs show that using a non-Gaussian DA method does not alleviate the non-Gaussian effects of sea ice concentration observations, and assimilating sea ice surface temperatures has a positive impact on snow updates. Finally, it is shown that the perturbed sea ice model parameters used to create additional ensemble spread in the free forecasts lead to a year-long negative snow volume bias. </jats:p>
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UmllZGVsLCBDaHJpc3RvcGhlcg==|https://frl.publisso.de/adhoc/uri/QW5kZXJzb24sIEplZmZyZXk=
1000 Hinweis
  • DeepGreen-ID: d95753e4c14a43fc9154c29cc6726811 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Science Foundation |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Science Foundation |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6487732.rdf
1000 Erstellt am 2024-10-03T08:13:38.161+0200
1000 Erstellt von 322
1000 beschreibt frl:6487732
1000 Zuletzt bearbeitet 2025-08-13T17:17:01.408+0200
1000 Objekt bearb. Wed Aug 13 17:17:01 CEST 2025
1000 Vgl. frl:6487732
1000 Oai Id
  1. oai:frl.publisso.de:frl:6487732 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source