Download
hess-28-4127-2024.pdf 9,20MB
WeightNameValue
1000 Titel
  • FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
1000 Autor/in
  1. Arnal, Louise |
  2. Clark, Martyn P. |
  3. Pietroniro, Alain |
  4. Vionnet, Vincent |
  5. Casson, David R. |
  6. Whitfield, Paul |
  7. Fortin, Vincent |
  8. Wood, Andrew |
  9. Knoben, Wouter |
  10. Newton, Brandi W. |
  11. Walford, Colleen |
1000 Verlag Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-12
1000 Erschienen in
1000 Quellenangabe
  • 28(17):4127-4155
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/hess-28-4127-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. Seasonal streamflow forecasts provide key information for decision-making in fields such as water supply management, hydropower generation, and irrigation scheduling. The predictability of streamflow on seasonal timescales relies heavily on initial hydrological conditions, such as the presence of snow and the availability of soil moisture. In high-latitude and high-altitude headwater basins in North America, snowmelt serves as the primary source of runoff generation. This study presents and evaluates a data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America (Canada and the USA). The workflow employs snow water equivalent (SWE) measurements as predictors and streamflow observations as predictands. Gap-filling of SWE datasets is accomplished using quantile mapping from neighboring SWE and precipitation stations, and principal component analysis is used to identify independent predictor components. These components are then utilized in a regression model to generate ensemble hindcasts of streamflow volumes for 75 nival basins with limited regulation from 1979 to 2021, encompassing diverse geographies and climates. Using a hindcast evaluation approach that is user-oriented provides key insights for snow-monitoring experts, forecasters, decision-makers, and workflow developers. The analysis presented here unveils a wide spectrum of predictability and offers a glimpse into potential future changes in predictability. Late-season snowpack emerges as a key factor in predicting spring and summer volumes, while high precipitation during the target period presents challenges to forecast skill and streamflow predictability. Notably, we can predict lower-than-normal and higher-than-normal streamflows during spring to early summer with lead times of up to 5 months in some basins. Our workflow is available on GitHub as a collection of Jupyter Notebooks, facilitating broader applications in cold regions and contributing to the ongoing advancement of methodologies. </jats:p>
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-0208-2324|https://frl.publisso.de/adhoc/uri/Q2xhcmssIE1hcnR5biBQLg==|https://orcid.org/0000-0001-5792-9177|https://orcid.org/0000-0002-9142-9739|https://frl.publisso.de/adhoc/uri/Q2Fzc29uLCBEYXZpZCBSLg==|https://orcid.org/0000-0001-6937-9459|https://orcid.org/0000-0002-2145-4592|https://orcid.org/0000-0002-6231-0085|https://orcid.org/0000-0001-8301-3787|https://frl.publisso.de/adhoc/uri/TmV3dG9uLCBCcmFuZGkgVy4=|https://frl.publisso.de/adhoc/uri/V2FsZm9yZCwgQ29sbGVlbg==
1000 Hinweis
  • DeepGreen-ID: 2e4b7aba24f54931b4fa2f940fa86e93 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Dateien
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6487882.rdf
1000 Erstellt am 2024-10-03T08:56:36.048+0200
1000 Erstellt von 322
1000 beschreibt frl:6487882
1000 Zuletzt bearbeitet 2025-08-13T17:45:29.324+0200
1000 Objekt bearb. Wed Aug 13 17:45:29 CEST 2025
1000 Vgl. frl:6487882
1000 Oai Id
  1. oai:frl.publisso.de:frl:6487882 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source