Download
tc-18-4089-2024.pdf 11,55MB
WeightNameValue
1000 Titel
  • Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
1000 Autor/in
  1. Yan, Shirui |
  2. Chen, Yang |
  3. Hou, Yaliang |
  4. Liu, Kexin |
  5. Li, Xuejing |
  6. Xing, Yuxuan |
  7. Wu, Dongyou |
  8. Cui, Jiecan |
  9. Zhou, Yue |
  10. Pu, Wei |
  11. Wang, Xin |
1000 Verlag
  • Copernicus Publications
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-10
1000 Erschienen in
1000 Quellenangabe
  • 18(9):4089-4109
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.5194/tc-18-4089-2024 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:p>Abstract. The extensive snow cover across the Tibetan Plateau (TP) has a major influence on the climate and water supply for over 1 billion downstream inhabitants. However, an adequate evaluation of variability in the snow cover fraction (SCF) over the TP simulated by multiple reanalysis datasets has yet to be undertaken. In this study, we used the Snow Property Inversion from Remote Sensing (SPIReS) SCF dataset for the water years (WYs) 2001–2017 to evaluate the capabilities of eight reanalysis datasets (HMASR, MERRA2, ERA5, ERA5L, JRA55, CFSR, CRAL, and GLDAS) in simulating the spatial and temporal variability in SCF in the TP. CFSR, GLDAS, CRAL, and HMASR are good in simulating the spatial pattern of climatological SCF, with lower bias and higher correlation and Taylor skill score (SS). By contrast, ERA5L, JRA55, and ERA5 have a relatively good performance in terms of SCF annual trends among eight reanalysis datasets. The biases in SCF simulations across reanalysis datasets are influenced by a combination of meteorological forcings, including snowfall and temperature, as well as by the SCF parameterization methods. However, the primary influencing factors vary among the reanalysis datasets. Additionally, averaging multiple reanalysis datasets can enhance the spatiotemporal accuracy of SCF simulations, but this enhancement effect does not consistently increase with the number of reanalysis datasets used. </jats:p>
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/WWFuLCBTaGlydWk=|https://frl.publisso.de/adhoc/uri/Q2hlbiwgWWFuZw==|https://frl.publisso.de/adhoc/uri/SG91LCBZYWxpYW5n|https://frl.publisso.de/adhoc/uri/TGl1LCBLZXhpbg==|https://frl.publisso.de/adhoc/uri/TGksIFh1ZWppbmc=|https://frl.publisso.de/adhoc/uri/WGluZywgWXV4dWFu|https://frl.publisso.de/adhoc/uri/V3UsIERvbmd5b3U=|https://frl.publisso.de/adhoc/uri/Q3VpLCBKaWVjYW4=|https://frl.publisso.de/adhoc/uri/WmhvdSwgWXVl|https://frl.publisso.de/adhoc/uri/UHUsIFdlaQ==|https://frl.publisso.de/adhoc/uri/V2FuZywgWGlu
1000 Hinweis
  • DeepGreen-ID: e900a199be14405cbbcde7d4eb3ce600 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Science Fund for Distinguished Young Scholars |
  2. Natural Science Foundation of Gansu Province |
  3. National Natural Science Foundation of China |
  4. Lanzhou University |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Science Fund for Distinguished Young Scholars |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Natural Science Foundation of Gansu Province |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer National Natural Science Foundation of China |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Lanzhou University |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6488240.rdf
1000 Erstellt am 2024-10-03T10:41:06.880+0200
1000 Erstellt von 322
1000 beschreibt frl:6488240
1000 Zuletzt bearbeitet 2024-10-04T18:30:08.414+0200
1000 Objekt bearb. Fri Oct 04 18:30:08 CEST 2024
1000 Vgl. frl:6488240
1000 Oai Id
  1. oai:frl.publisso.de:frl:6488240 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source