Download
Smith-et-al_2024_Development and external validation of a head and neck cancer risk prediction model.pdf 1,75MB
WeightNameValue
1000 Titel
  • Development and external validation of a head and neck cancer risk prediction model
1000 Autor/in
  1. Smith, Craig David Leslie |
  2. McMahon, Alex |
  3. Lyall, Donald |
  4. de Aquino Goulart, Mariel |
  5. Inman, Gareth |
  6. Ross, Al |
  7. Gormley, Mark |
  8. Dudding, Tom |
  9. Macfarlane, Gary |
  10. Robinson, Max |
  11. richiardi, lorenzo |
  12. Serraino, Diego |
  13. Polesel, Jerry |
  14. Canova, Cristina |
  15. Ahrens, Wolfgang |
  16. Healy, Claire M |
  17. Lagiou, Pagona |
  18. Holcatova, Ivana |
  19. Alemany, Laia |
  20. Znoar, Ariana |
  21. Waterboer, Tim |
  22. Brennan, Paul |
  23. Virani, Shama |
  24. Conway, David |
1000 Erscheinungsjahr 2024
1000 LeibnizOpen
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-08
1000 Erschienen in
1000 Quellenangabe
  • 46(9):2261-2273
1000 FRL-Sammlung
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1002/hed.27834 |
1000 Ergänzendes Material
  • https://onlinelibrary.wiley.com/doi/10.1002/hed.27834#support-information-section |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • BACKGROUND: Head and neck cancer (HNC) incidence is on the rise, often diagnosed at late stage and associated with poor prognoses. Risk prediction tools have a potential role in prevention and early detection. METHODS: The IARC-ARCAGE European case–control study was used as the model development dataset. A clinical HNC risk prediction model using behavioral and demographic predictors was developed via multivariable logistic regression analyses. The model was then externally validated in the UK Biobank cohort. Model performance was tested using discrimination and calibration metrics. RESULTS: 1926 HNC cases and 2043 controls were used for the development of the model. The development dataset model including sociodemographic, smoking, and alcohol variables had moderate discrimination, with an area under curve (AUC) value of 0.75 (95% CI, 0.74–0.77); the calibration slope (0.75) and tests were suggestive of good calibration. 384 616 UK Biobank participants (with 1177 HNC cases) were available for external validation of the model. Upon external validation, the model had an AUC of 0.62 (95% CI, 0.61–0.64). CONCLUSION: We developed and externally validated a HNC risk prediction model using the ARCAGE and UK Biobank studies, respectively. This model had moderate performance in the development population and acceptable performance in the validation dataset. Demographics and risk behaviors are strong predictors of HNC, and this model may be a helpful tool in primary dental care settings to promote prevention and determine recall intervals for dental examination. Future addition of HPV serology or genetic factors could further enhance individual risk prediction.
1000 Sacherschließung
lokal Behaviors
lokal Epidemiology
lokal oropharyngeal cancer
lokal risk prediction
lokal model
lokal Head and neck cancer
lokal oral cancer
lokal Demographics
lokal risk
lokal laryngeal cancer
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-6465-7472|https://orcid.org/0000-0002-9425-7792|https://orcid.org/0000-0003-3850-1487|https://orcid.org/0000-0001-5263-6746|https://orcid.org/0000-0002-6264-4253|https://orcid.org/0000-0003-2952-3182|https://orcid.org/0000-0001-5733-6304|https://orcid.org/0000-0003-3756-040X|https://orcid.org/0000-0003-2322-3314|https://orcid.org/0000-0003-4491-6865|https://orcid.org/0000-0003-0316-9402|https://frl.publisso.de/adhoc/uri/U2VycmFpbm8sIERpZWdv|https://orcid.org/0000-0001-9381-1520|https://frl.publisso.de/adhoc/uri/Q2Fub3ZhLCBDcmlzdGluYQ==|https://orcid.org/0000-0003-3777-570X|https://orcid.org/0000-0003-0583-6360|https://frl.publisso.de/adhoc/uri/TGFnaW91LCBQYWdvbmE=|https://orcid.org/0000-0002-1366-0337|https://orcid.org/0000-0003-0945-6015|https://frl.publisso.de/adhoc/uri/Wm5vYXIsIEFyaWFuYQ==|https://frl.publisso.de/adhoc/uri/V2F0ZXJib2VyLCBUaW0=|https://orcid.org/0000-0002-0518-8714|https://orcid.org/0000-0002-1163-432X|https://orcid.org/0000-0001-7762-4063
1000 (Academic) Editor
1000 Label
1000 Förderer
  1. https://doi.org/10.13039/501100004966 |
  2. University of Athens Medical School |
  3. https://doi.org/10.13039/100007388 |
  4. https://doi.org/10.13039/501100003510 |
  5. https://doi.org/10.13039/501100000289 |
  6. https://doi.org/10.13039/501100018703 |
  7. https://doi.org/10.13039/100010661 |
  8. https://doi.org/10.13039/501100003196 |
  9. Welcome Trust medical charity |
  10. https://doi.org/10.13039/501100000265 |
  11. https://doi.org/10.13039/501100000276 |
  12. https://doi.org/10.13039/100012095 |
  13. https://doi.org/10.13039/501100004186 |
  14. https://doi.org/10.13039/100015846 |
  15. https://doi.org/10.13039/501100000274 |
  16. https://doi.org/10.13039/501100000289 |
  17. https://doi.org/10.13039/501100000361 |
  18. National Health Service (NHS) |
  19. https://doi.org/10.13039/100010269 |
  20. https://doi.org/10.13039/501100020643 |
  21. https://doi.org/10.13039/501100000272 |
1000 Fördernummer
  1. QLK1-CT-2001-00182
  2. -
  3. -
  4. 0180142s08
  5. -
  6. 315941-01
  7. 825771
  8. -
  9. -
  10. -
  11. -
  12. -
  13. -
  14. -
  15. -
  16. -
  17. -
  18. -
  19. -
  20. -
  21. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
  5. Train and retain Academic Cancer Clinicians (TRACC) programme
  6. -
  7. -
  8. -
  9. -
  10. -
  11. -
  12. -
  13. -
  14. -
  15. -
  16. -
  17. -
  18. -
  19. -
  20. -
  21. -
1000 Dateien
  1. Development and external validation of a head and neck cancer risk prediction model
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100004966 |
    1000 Förderprogramm -
    1000 Fördernummer QLK1-CT-2001-00182
  2. 1000 joinedFunding-child
    1000 Förderer University of Athens Medical School |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100007388 |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100003510 |
    1000 Förderprogramm -
    1000 Fördernummer 0180142s08
  5. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000289 |
    1000 Förderprogramm Train and retain Academic Cancer Clinicians (TRACC) programme
    1000 Fördernummer -
  6. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100018703 |
    1000 Förderprogramm -
    1000 Fördernummer 315941-01
  7. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100010661 |
    1000 Förderprogramm -
    1000 Fördernummer 825771
  8. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100003196 |
    1000 Förderprogramm -
    1000 Fördernummer -
  9. 1000 joinedFunding-child
    1000 Förderer Welcome Trust medical charity |
    1000 Förderprogramm -
    1000 Fördernummer -
  10. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000265 |
    1000 Förderprogramm -
    1000 Fördernummer -
  11. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000276 |
    1000 Förderprogramm -
    1000 Fördernummer -
  12. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100012095 |
    1000 Förderprogramm -
    1000 Fördernummer -
  13. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100004186 |
    1000 Förderprogramm -
    1000 Fördernummer -
  14. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100015846 |
    1000 Förderprogramm -
    1000 Fördernummer -
  15. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000274 |
    1000 Förderprogramm -
    1000 Fördernummer -
  16. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000289 |
    1000 Förderprogramm -
    1000 Fördernummer -
  17. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000361 |
    1000 Förderprogramm -
    1000 Fördernummer -
  18. 1000 joinedFunding-child
    1000 Förderer National Health Service (NHS) |
    1000 Förderprogramm -
    1000 Fördernummer -
  19. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/100010269 |
    1000 Förderprogramm -
    1000 Fördernummer -
  20. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100020643 |
    1000 Förderprogramm -
    1000 Fördernummer -
  21. 1000 joinedFunding-child
    1000 Förderer https://doi.org/10.13039/501100000272 |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6489484.rdf
1000 Erstellt am 2025-01-17T12:45:21.389+0100
1000 Erstellt von 266
1000 beschreibt frl:6489484
1000 Bearbeitet von 284
1000 Zuletzt bearbeitet 2025-01-29T12:07:24.360+0100
1000 Objekt bearb. Wed Jan 29 12:07:16 CET 2025
1000 Vgl. frl:6489484
1000 Oai Id
  1. oai:frl.publisso.de:frl:6489484 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source