Download
12911_2024_Article_2430.pdf 1,18MB
WeightNameValue
1000 Titel
  • Only the anxious ones? Identifying characteristics of symptom checker app users: a cross-sectional survey
1000 Autor/in
  1. Wetzel, Anna-Jasmin |
  2. Klemmt, Malte |
  3. Müller, Regina |
  4. Rieger, Monika A. |
  5. Joos, Stefanie |
  6. Koch, Roland |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-01-23
1000 Erschienen in
1000 Quellenangabe
  • 24(1):21
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12911-024-02430-5 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804572/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Symptom checker applications (SCAs) may help laypeople classify their symptoms and receive recommendations on medically appropriate actions. Further research is necessary to estimate the influence of user characteristics, attitudes and (e)health-related competencies.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>The objective of this study is to identify meaningful predictors for SCA use considering user characteristics.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>An explorative cross-sectional survey was conducted to investigate German citizens’ demographics, eHealth literacy, hypochondria, self-efficacy, and affinity for technology using German language–validated questionnaires. A total of 869 participants were eligible for inclusion in the study. As<jats:italic>n</jats:italic> = 67 SCA users were assessed and matched 1:1 with non-users, a sample of<jats:italic>n</jats:italic> = 134 participants were assessed in the main analysis. A four-step analysis was conducted involving explorative predictor selection, model comparisons, and parameter estimates for selected predictors, including sensitivity and post hoc analyses.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Hypochondria and self-efficacy were identified as meaningful predictors of SCA use. Hypochondria showed a consistent and significant effect across all analyses OR: 1.24–1.26 (95% CI: 1.1–1.4). Self-efficacy OR: 0.64–0.93 (95% CI: 0.3–1.4) showed inconsistent and nonsignificant results, leaving its role in SCA use unclear. Over half of the SCA users in our sample met the classification for hypochondria (cut-off on the WI of 5).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Hypochondria has emerged as a significant predictor of SCA use with a consistently stable effect, yet according to the literature, individuals with this trait may be less likely to benefit from SCA despite their greater likelihood of using it. These users could be further unsettled by risk-averse triage and unlikely but serious diagnosis suggestions.</jats:p></jats:sec><jats:sec><jats:title>Trial Registration</jats:title><jats:p>The study was registered in the German Clinical Trials Register (DRKS) DRKS00022465, DERR1-<jats:ext-link xmlns:xlink='http://www.w3.org/1999/xlink' ext-link-type='doi' xlink:href='10.2196/34026'>https://doi.org/10.2196/34026</jats:ext-link>.</jats:p></jats:sec>
1000 Sacherschließung
lokal Cyberchondria
lokal Digital health
lokal Language [MeSH]
lokal Humans [MeSH]
lokal Patient safety
lokal mHealth
lokal Cross-Sectional Studies [MeSH]
lokal eHealth
lokal Mental health
lokal Self-diagnosis
lokal Research
lokal Phenotype [MeSH]
lokal Symptom Checker
lokal Mobile Applications [MeSH]
lokal Probability [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/V2V0emVsLCBBbm5hLUphc21pbg==|https://frl.publisso.de/adhoc/uri/S2xlbW10LCBNYWx0ZQ==|https://frl.publisso.de/adhoc/uri/TcO8bGxlciwgUmVnaW5h|https://frl.publisso.de/adhoc/uri/UmllZ2VyLCBNb25pa2EgQS4=|https://frl.publisso.de/adhoc/uri/Sm9vcywgU3RlZmFuaWU=|https://frl.publisso.de/adhoc/uri/S29jaCwgUm9sYW5k
1000 Hinweis
  • DeepGreen-ID: 7ef8a32861b048e985058cedc0ec3fa1 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Universitätsklinikum Tübingen |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Tübingen |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6489842.rdf
1000 Erstellt am 2025-02-03T09:35:19.007+0100
1000 Erstellt von 322
1000 beschreibt frl:6489842
1000 Zuletzt bearbeitet 2025-09-09T10:52:57.721+0200
1000 Objekt bearb. Tue Sep 09 10:52:57 CEST 2025
1000 Vgl. frl:6489842
1000 Oai Id
  1. oai:frl.publisso.de:frl:6489842 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source