Download
12916_2024_Article_3398.pdf 3,39MB
WeightNameValue
1000 Titel
  • Histology-specific standardized incidence ratio improves the estimation of second primary lung cancer risk
1000 Autor/in
  1. Eberl, Marian |
  2. Tanaka, Luana |
  3. Kraywinkel, Klaus |
  4. Klug, Stefanie J. |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-03
1000 Erschienen in
1000 Quellenangabe
  • 22(1):187
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12916-024-03398-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069219/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Lung cancer (LC) survivors are at increased risk for developing a second primary cancer (SPC) compared to the general population. While this risk is particularly high for smoking-related SPCs, the published standardized incidence ratio (SIR) for lung cancer after lung cancer is unexpectedly low in countries that follow international multiple primary (IARC/IACR MP) rules when compared to the USA, where distinct rules are employed. IARC/IACR rules rely on histology-dependent documentation of SPC with the same location as the first cancer and only classify an SPC when tumors present different histology. Thus, SIR might be underestimated in cancer registries using these rules. This study aims to assess whether using histology-specific reference rates for calculating SIR improves risk estimates for second primary lung cancer (SPLC) in LC survivors.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We (i) use the distribution of histologic subtypes of LC in population-based cancer registry data of 11 regional cancer registries from Germany to present evidence that the conventional SIR metric underestimates the actual risk for SPLC in LC survivors in registries that use IARC/IACR MP rules, (ii) present updated risk estimates for SPLC in Germany using a novel method to calculate histological subtype-specific SIRs, and (iii) validate this new method using US SEER (Surveillance, Epidemiology, and End Results Program) data, where different MP rules are applied.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The adjusted relative risk for lung cancer survivors in Germany to develop an SPLC was 2.98 (95% CI 2.53–3.49) for females and 1.15 (95% CI 1.03–1.27) for males using the novel histology-specific SIR. When using IARC/IACR MP rules, the conventional SIR underestimates the actual risk for SPLC in LC survivors by approximately 30% for both sexes.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Our proposed histology-specific method makes the SIR metric more robust against MP rules and, thus, more suitable for cross-country comparisons.</jats:p></jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Aged, 80 and over [MeSH]
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Cancer epidemiology
lokal Incidence [MeSH]
lokal Middle Aged [MeSH]
lokal Risk Factors [MeSH]
lokal Cancer registry data
lokal Neoplasms, Second Primary/pathology [MeSH]
lokal Lung Neoplasms/epidemiology [MeSH]
lokal Second primary cancer
lokal Germany/epidemiology [MeSH]
lokal Neoplasms, Second Primary/epidemiology [MeSH]
lokal Standardized incidence ratio
lokal Male [MeSH]
lokal United States/epidemiology [MeSH]
lokal Lung Neoplasms/pathology [MeSH]
lokal Lung cancer
lokal Risk Assessment/methods [MeSH]
lokal Research Article
lokal Registries [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-6584-3197|https://orcid.org/0000-0002-2086-7491|https://orcid.org/0000-0002-9250-6003|https://orcid.org/0000-0003-3523-1362
1000 Hinweis
  • DeepGreen-ID: 2aaeb0092a9640cc9a4c698a59acb1d7 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Technische Universität München |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Technische Universität München |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6489896.rdf
1000 Erstellt am 2025-02-03T09:46:34.464+0100
1000 Erstellt von 322
1000 beschreibt frl:6489896
1000 Zuletzt bearbeitet 2025-07-30T11:25:01.376+0200
1000 Objekt bearb. Wed Jul 30 11:25:01 CEST 2025
1000 Vgl. frl:6489896
1000 Oai Id
  1. oai:frl.publisso.de:frl:6489896 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source