Download
00259_2024_Article_6782.pdf 2,59MB
WeightNameValue
1000 Titel
  • Resolving spatial response heterogeneity in glioblastoma
1000 Autor/in
  1. Ziegenfeuter, Julian |
  2. Delbridge, Claire |
  3. Bernhardt, Denise |
  4. Gempt, Jens |
  5. Schmidt-Graf, Friederike |
  6. Hedderich, Dennis |
  7. Griessmair, Michael |
  8. Thomas, Marie |
  9. Meyer, Hanno S |
  10. Zimmer, Claus |
  11. Meyer, Bernhard |
  12. Combs, Stephanie E |
  13. Yakushev, Igor |
  14. Metz, Marie-Christin |
  15. Wiestler, Benedikt |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-06-05
1000 Erschienen in
1000 Quellenangabe
  • 51(12):3685-3695
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00259-024-06782-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445274/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Spatial intratumoral heterogeneity poses a significant challenge for accurate response assessment in glioblastoma. Multimodal imaging coupled with advanced image analysis has the potential to unravel this response heterogeneity.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Based on automated tumor segmentation and longitudinal registration with follow-up imaging, we categorized contrast-enhancing voxels of 61 patients with suspected recurrence of glioblastoma into either true tumor progression (TP) or pseudoprogression (PsP). To allow the unbiased analysis of semantically related image regions, adjacent voxels with similar values of cerebral blood volume (CBV), FET-PET, and contrast-enhanced T1w were automatically grouped into supervoxels. We then extracted first-order statistics as well as texture features from each supervoxel. With these features, a Random Forest classifier was trained and validated employing a 10-fold cross-validation scheme. For model evaluation, the area under the receiver operating curve, as well as classification performance metrics were calculated.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Our image analysis pipeline enabled reliable spatial assessment of tumor response. The predictive model reached an accuracy of 80.0% and a macro-weighted AUC of 0.875, which takes class imbalance into account, in the hold-out samples from cross-validation on supervoxel level. Analysis of feature importances confirmed the significant role of FET-PET-derived features. Accordingly, TP- and PsP-labeled supervoxels differed significantly in their 10th and 90th percentile, as well as the median of tumor-to-background normalized FET-PET. However, CBV- and T1c-related features also relevantly contributed to the model’s performance.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Disentangling the intratumoral heterogeneity in glioblastoma holds immense promise for advancing precise local response evaluation and thereby also informing more personalized and localized treatment strategies in the future.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Pseudoprogression
lokal Female [MeSH]
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal Middle Aged [MeSH]
lokal Glioblastoma/pathology [MeSH]
lokal DSC perfusion
lokal Glioblastoma
lokal PET
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Original Article
lokal Radiomics
lokal Magnetic Resonance Imaging [MeSH]
lokal Positron-Emission Tomography/methods [MeSH]
lokal Male [MeSH]
lokal Spatial heterogeneity
lokal Brain Neoplasms/diagnostic imaging [MeSH]
lokal Glioblastoma/diagnostic imaging [MeSH]
lokal Brain Neoplasms/pathology [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-7306-7554|https://frl.publisso.de/adhoc/uri/RGVsYnJpZGdlLCBDbGFpcmU=|https://frl.publisso.de/adhoc/uri/QmVybmhhcmR0LCBEZW5pc2U=|https://frl.publisso.de/adhoc/uri/R2VtcHQsIEplbnM=|https://frl.publisso.de/adhoc/uri/U2NobWlkdC1HcmFmLCBGcmllZGVyaWtl|https://frl.publisso.de/adhoc/uri/SGVkZGVyaWNoLCBEZW5uaXM=|https://frl.publisso.de/adhoc/uri/R3JpZXNzbWFpciwgTWljaGFlbA==|https://frl.publisso.de/adhoc/uri/VGhvbWFzLCBNYXJpZQ==|https://frl.publisso.de/adhoc/uri/TWV5ZXIsIEhhbm5vIFM=|https://frl.publisso.de/adhoc/uri/WmltbWVyLCBDbGF1cw==|https://frl.publisso.de/adhoc/uri/TWV5ZXIsIEJlcm5oYXJk|https://frl.publisso.de/adhoc/uri/Q29tYnMsIFN0ZXBoYW5pZSBF|https://frl.publisso.de/adhoc/uri/WWFrdXNoZXYsIElnb3I=|https://frl.publisso.de/adhoc/uri/TWV0eiwgTWFyaWUtQ2hyaXN0aW4=|https://frl.publisso.de/adhoc/uri/V2llc3RsZXIsIEJlbmVkaWt0
1000 Hinweis
  • DeepGreen-ID: ba3a732c689b4bbca8e462f2f3956bab ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Technische Universität München |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
  1. Resolving spatial response heterogeneity in glioblastoma
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Technische Universität München |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6491514.rdf
1000 Erstellt am 2025-02-03T14:42:04.166+0100
1000 Erstellt von 322
1000 beschreibt frl:6491514
1000 Zuletzt bearbeitet 2025-09-14T10:48:52.133+0200
1000 Objekt bearb. Sun Sep 14 10:48:52 CEST 2025
1000 Vgl. frl:6491514
1000 Oai Id
  1. oai:frl.publisso.de:frl:6491514 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source