Download
11547_2023_Article_1735.pdf 977,54KB
WeightNameValue
1000 Titel
  • Artificial intelligence applied in acute ischemic stroke: from child to elderly
1000 Autor/in
  1. Pacchiano, Francesco |
  2. Tortora, Mario |
  3. Criscuolo, Sabrina |
  4. Jaber, Katya |
  5. Acierno, Pasquale |
  6. De Simone, Marta |
  7. Tortora, Fabio |
  8. Briganti, Francesco |
  9. Caranci, Ferdinando |
1000 Verlag Springer Milan
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-10-25
1000 Erschienen in
1000 Quellenangabe
  • 129(1):83-92
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11547-023-01735-1 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808481/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>This review will summarize artificial intelligence developments in acute ischemic stroke in recent years and forecasts for the future. Stroke is a major healthcare concern due to its effects on the patient’s quality of life and its dependence on the timing of the identification as well as the treatment. In recent years, attention increased on the use of artificial intelligence (AI) systems to help categorize, prognosis, and to channel these patients toward the right therapeutic procedure. Machine learning (ML) and in particular deep learning (DL) systems using convoluted neural networks (CNN) are becoming increasingly popular. Various studies over the years evaluated the use of these methods of analysis and prediction in the assessment of stroke patients, and at the same time, several applications and software have been developed to support the neuroradiologists and the stroke team to improve patient outcomes.</jats:p>
1000 Sacherschließung
lokal Acute stroke therapy
lokal Aged [MeSH]
lokal Humans [MeSH]
lokal Software [MeSH]
lokal Artificial intelligence
lokal Artificial Intelligence [MeSH]
lokal Stroke
lokal Interventional neuroradiology
lokal Ischemic Stroke [MeSH]
lokal Stroke [MeSH]
lokal Quality of Life [MeSH]
lokal Emergency Radiology
lokal Child [MeSH]
lokal Ischemic stroke
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/UGFjY2hpYW5vLCBGcmFuY2VzY28=|https://orcid.org/0000-0002-4745-3061|https://frl.publisso.de/adhoc/uri/Q3Jpc2N1b2xvLCBTYWJyaW5h|https://frl.publisso.de/adhoc/uri/SmFiZXIsIEthdHlh|https://frl.publisso.de/adhoc/uri/QWNpZXJubywgUGFzcXVhbGU=|https://frl.publisso.de/adhoc/uri/RGUgU2ltb25lLCBNYXJ0YQ==|https://frl.publisso.de/adhoc/uri/VG9ydG9yYSwgRmFiaW8=|https://frl.publisso.de/adhoc/uri/QnJpZ2FudGksIEZyYW5jZXNjbw==|https://frl.publisso.de/adhoc/uri/Q2FyYW5jaSwgRmVyZGluYW5kbw==
1000 Hinweis
  • DeepGreen-ID: fe8f019d4bf34ce2b4421c76fb7c393a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Università degli Studi di Napoli Federico II |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Università degli Studi di Napoli Federico II |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6493180.rdf
1000 Erstellt am 2025-02-03T19:57:58.455+0100
1000 Erstellt von 322
1000 beschreibt frl:6493180
1000 Zuletzt bearbeitet 2025-08-05T07:50:20.312+0200
1000 Objekt bearb. Tue Aug 05 07:50:20 CEST 2025
1000 Vgl. frl:6493180
1000 Oai Id
  1. oai:frl.publisso.de:frl:6493180 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source