Download
41746_2024_Article_1196.pdf 2,28MB
WeightNameValue
1000 Titel
  • The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review
1000 Autor/in
  1. Schwabe, Daniel |
  2. Becker, Katinka |
  3. Seyferth, Martin |
  4. Klaß, Andreas |
  5. Schaeffter, Tobias |
1000 Verlag
  • Nature Publishing Group UK
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-08-03
1000 Erschienen in
1000 Quellenangabe
  • 7(1):203
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41746-024-01196-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297942/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>The adoption of machine learning (ML) and, more specifically, deep learning (DL) applications into all major areas of our lives is underway. The development of trustworthy AI is especially important in medicine due to the large implications for patients’ lives. While trustworthiness concerns various aspects including ethical, transparency and safety requirements, we focus on the importance of data quality (training/test) in DL. Since data quality dictates the behaviour of ML products, evaluating data quality will play a key part in the regulatory approval of medical ML products. We perform a systematic review following PRISMA guidelines using the databases Web of Science, PubMed and ACM Digital Library. We identify 5408 studies, out of which 120 records fulfil our eligibility criteria. From this literature, we synthesise the existing knowledge on data quality frameworks and combine it with the perspective of ML applications in medicine. As a result, we propose the METRIC-framework, a specialised data quality framework for medical training data comprising 15 awareness dimensions, along which developers of medical ML applications should investigate the content of a dataset. This knowledge helps to reduce biases as a major source of unfairness, increase robustness, facilitate interpretability and thus lays the foundation for trustworthy AI in medicine. The METRIC-framework may serve as a base for systematically assessing training datasets, establishing reference datasets, and designing test datasets which has the potential to accelerate the approval of medical ML products.</jats:p>
1000 Sacherschließung
lokal review-article
lokal /692/700
lokal Review Article
lokal /639/705/1046
lokal /639/705/531
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0003-2825-3352|https://orcid.org/0009-0007-9663-6722|https://orcid.org/0009-0000-5930-287X|https://orcid.org/0009-0007-3244-3729|https://orcid.org/0000-0003-1310-2631
1000 Hinweis
  • DeepGreen-ID: 9b60fa6d063a4f79b37e1f14e1c523ec ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. European Commission |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer European Commission |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6494440.rdf
1000 Erstellt am 2025-02-04T03:13:54.103+0100
1000 Erstellt von 322
1000 beschreibt frl:6494440
1000 Zuletzt bearbeitet 2025-07-30T15:25:16.158+0200
1000 Objekt bearb. Wed Jul 30 15:25:16 CEST 2025
1000 Vgl. frl:6494440
1000 Oai Id
  1. oai:frl.publisso.de:frl:6494440 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source