Download
40623_2024_Article_2042.pdf 8,84MB
WeightNameValue
1000 Titel
  • Findings on celestial pole offsets predictions in the second earth orientation parameters prediction comparison campaign (2nd EOP PCC)
1000 Autor/in
  1. Winska, Malgorzata |
  2. Kur, Tomasz |
  3. Śliwińska-Bronowicz, Justyna |
  4. Nastula, Jolanta |
  5. Dobslaw, Henryk |
  6. Partyka, Aleksander |
  7. Belda, Santiago |
  8. Bizouard, Christian |
  9. Boggs, Dale |
  10. Chin, Mike |
  11. Dhar, Sujata |
  12. Ferrandiz, Jose M. |
  13. Gou, Junyang |
  14. Gross, Richard |
  15. Guessoum, Sonia |
  16. Heinkelmann, Robert |
  17. Modiri, Sadegh |
  18. Ratcliff, Todd |
  19. Raut, Shrishail |
  20. Schartner, Matthias |
  21. Schuh, Harald |
  22. Kiani Shahvandi, Mostafa |
  23. Soja, Benedikt |
  24. Thaller, Daniela |
  25. Wu, Yuanwei |
  26. Xu, Xueqing |
  27. Yang, Xinyu |
  28. Zhao, Xin |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-30
1000 Erschienen in
1000 Quellenangabe
  • 76(1):100
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40623-024-02042-3 |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>In 2021, the International Earth Rotation and Reference Systems Service (IERS) established a working group tasked with conducting the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) to assess the current accuracy of EOP forecasts. From September 2021 to December 2022, EOP predictions submitted by participants from various institutes worldwide were systematically collected and evaluated. This article summarizes the campaign's outcomes, concentrating on the forecasts of the dX, dY, and dψ, dε components of celestial pole offsets (CPO). After detailing the campaign participants and the methodologies employed, we conduct an in-depth analysis of the collected forecasts. We examine the discrepancies between observed and predicted CPO values and analyze their statistical characteristics such as mean, standard deviation, and range. To evaluate CPO forecasts, we computed the mean absolute error (MAE) using the IERS EOP 14 C04 solution as the reference dataset. We then compared the results obtained with forecasts provided by the IERS. The main goal of this study was to show the influence of different methods used on predictions accuracy. Depending on the evaluated prediction approach, the MAE values computed for day 10 of forecast were between 0.03 and 0.16 mas for dX, between 0.03 and 0.12 mas for dY, between 0.07 and 0.91 mas for dψ, and between 0.04 and 0.41 mas for dε. For day 30 of prediction, the corresponding MAE values ranged between 0.03 and 0.12 for dX, and between 0.03 and 0.14 mas for dY. This research shows that machine learning algorithms are the most promising approach in CPO forecasting and provide the highest prediction accuracy (0.06 mas for dX and 0.08 mas for dY for day 10 of prediction).</jats:p> <jats:p><jats:bold>Graphical abstract</jats:bold></jats:p>
1000 Sacherschließung
lokal 6. Geodesy
lokal Celestial pole offsets (CPO)
lokal Earth Orientation Parameters (EOP)
lokal Full Paper
lokal Prediction
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-5265-3028|https://frl.publisso.de/adhoc/uri/S3VyLCBUb21hc3o=|https://frl.publisso.de/adhoc/uri/xZpsaXdpxYRza2EtQnJvbm93aWN6LCBKdXN0eW5h|https://frl.publisso.de/adhoc/uri/TmFzdHVsYSwgSm9sYW50YQ==|https://frl.publisso.de/adhoc/uri/RG9ic2xhdywgSGVucnlr|https://frl.publisso.de/adhoc/uri/UGFydHlrYSwgQWxla3NhbmRlcg==|https://frl.publisso.de/adhoc/uri/QmVsZGEsIFNhbnRpYWdv|https://frl.publisso.de/adhoc/uri/Qml6b3VhcmQsIENocmlzdGlhbg==|https://frl.publisso.de/adhoc/uri/Qm9nZ3MsIERhbGU=|https://frl.publisso.de/adhoc/uri/Q2hpbiwgTWlrZQ==|https://frl.publisso.de/adhoc/uri/RGhhciwgU3VqYXRh|https://frl.publisso.de/adhoc/uri/RmVycmFuZGl6LCBKb3NlIE0u|https://frl.publisso.de/adhoc/uri/R291LCBKdW55YW5n|https://frl.publisso.de/adhoc/uri/R3Jvc3MsIFJpY2hhcmQ=|https://frl.publisso.de/adhoc/uri/R3Vlc3NvdW0sIFNvbmlh|https://frl.publisso.de/adhoc/uri/SGVpbmtlbG1hbm4sIFJvYmVydA==|https://frl.publisso.de/adhoc/uri/TW9kaXJpLCBTYWRlZ2g=|https://frl.publisso.de/adhoc/uri/UmF0Y2xpZmYsIFRvZGQ=|https://frl.publisso.de/adhoc/uri/UmF1dCwgU2hyaXNoYWls|https://frl.publisso.de/adhoc/uri/U2NoYXJ0bmVyLCBNYXR0aGlhcw==|https://frl.publisso.de/adhoc/uri/U2NodWgsIEhhcmFsZA==|https://frl.publisso.de/adhoc/uri/S2lhbmkgU2hhaHZhbmRpLCBNb3N0YWZh|https://frl.publisso.de/adhoc/uri/U29qYSwgQmVuZWRpa3Q=|https://frl.publisso.de/adhoc/uri/VGhhbGxlciwgRGFuaWVsYQ==|https://frl.publisso.de/adhoc/uri/V3UsIFl1YW53ZWk=|https://frl.publisso.de/adhoc/uri/WHUsIFh1ZXFpbmc=|https://frl.publisso.de/adhoc/uri/WWFuZywgWGlueXU=|https://frl.publisso.de/adhoc/uri/WmhhbywgWGlu
1000 Hinweis
  • DeepGreen-ID: d7db83386b8a491f82daa2826f107465 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Narodowym Centrum Nauki |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Narodowym Centrum Nauki |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6494458.rdf
1000 Erstellt am 2025-02-04T03:18:29.470+0100
1000 Erstellt von 322
1000 beschreibt frl:6494458
1000 Zuletzt bearbeitet 2025-08-05T07:44:38.404+0200
1000 Objekt bearb. Tue Aug 05 07:44:38 CEST 2025
1000 Vgl. frl:6494458
1000 Oai Id
  1. oai:frl.publisso.de:frl:6494458 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source