Download
41416_2024_Article_2858.pdf 1,09MB
WeightNameValue
1000 Titel
  • Prognostic role of pre-diagnostic circulating inflammatory biomarkers in breast cancer survival: evidence from the EPIC cohort study
1000 Autor/in
  1. Castro Espin, Carlota |
  2. Cairat, Manon |
  3. Navionis, Anne-Sophie |
  4. Dahm, Christina |
  5. Antoniussen, Christian S. |
  6. Tjønneland, Anne |
  7. Mellemkjær, Lene |
  8. Mancini, Francesca Romana |
  9. Hajji-Louati, Mariem |
  10. Severi, Gianluca |
  11. Le Cornet, Charlotte |
  12. Kaaks, Rudolf |
  13. Schulze, Matthias B. |
  14. Masala, Giovanna |
  15. Agnoli, Claudia |
  16. Sacerdote, Carlotta |
  17. Crous-Bou, Marta |
  18. Sánchez, Maria-Jose |
  19. Amiano, Pilar |
  20. Chirlaque, María-Dolores |
  21. Guevara, Marcela |
  22. Smith-Byrne, Karl |
  23. Heath, Alicia |
  24. Christakoudi, Sofia |
  25. Gunter, Marc J. |
  26. Rinaldi, Sabina |
  27. Agudo, Antonio |
  28. Dossus, Laure |
1000 Verlag Nature Publishing Group UK
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-28
1000 Erschienen in
1000 Quellenangabe
  • 131(9):1496-1505
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41416-024-02858-6 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519559/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Inflammation influences tumour progression and cancer prognosis, but its role preceding breast cancer (BC) and its prognostic implications remain inconclusive.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We studied pre-diagnostic plasma inflammatory biomarkers in 1538 women with BC from the EPIC study. Cox proportional hazards models assessed their relationship with all-cause and BC-specific mortality, adjusting for tumour characteristics and lifestyle factors.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Over a 7-year follow-up after diagnosis, 229 women died, 163 from BC. Elevated IL-6 levels were associated with increased all-cause mortality risk (HR<jats:sub>1-SD</jats:sub> 1.25, 95% CI 1.07–1.47). Among postmenopausal, IL-6 was associated with higher all-cause (HR<jats:sub>1-SD</jats:sub> 1.41, 95% CI 1.18–1.69) and BC-specific mortality (HR<jats:sub>1-SD</jats:sub> 1.31, 95% CI 1.03–1.66), (<jats:italic>P</jats:italic><jats:sub>Heterogeneity (pre/postmenopausal)</jats:sub> &lt; 0.05 for both), while IL-10 and TNFα were associated with all-cause mortality only (HR<jats:sub>1-SD</jats:sub> 1.19, 95% CI 1.02–1.40 and HR<jats:sub>1-SD</jats:sub> 1.28, 95% CI 1.06–1.56). Among ER+PR+, IL-10 was associated with all-cause and BC-specific mortality (HR<jats:sub>1-SD</jats:sub> 1.35, 95% CI 1.10–1.65 and HR<jats:sub>1-SD</jats:sub> 1.42 95% CI 1.08–1.86), while TNF-α was associated with all-cause mortality in HER2- (HR<jats:sub>1-SD</jats:sub> 1.31, 95% CI 1.07–1.61). An inflammatory score predicted higher all-cause mortality, especially in postmenopausal women (HR<jats:sub>1-SD</jats:sub> 1.30, 95% CI 1.07–1.58).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>Higher pre-diagnosis IL-6 levels suggest poorer long-term survival among BC survivors. In postmenopausal survivors, elevated IL-6, IL-10, and TNFα and inflammatory scores seem to predict all-cause mortality.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Inflammation/blood [MeSH]
lokal Female [MeSH]
lokal /631/67/2324
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Humans [MeSH]
lokal /692/53/2422
lokal Breast Neoplasms/blood [MeSH]
lokal Postmenopause/blood [MeSH]
lokal Middle Aged [MeSH]
lokal Tumor Necrosis Factor-alpha/blood [MeSH]
lokal /692/4028/67/1347
lokal Inflammation/mortality [MeSH]
lokal Cohort Studies [MeSH]
lokal Article
lokal Proportional Hazards Models [MeSH]
lokal Interleukin-10/blood [MeSH]
lokal Biomarkers, Tumor/blood [MeSH]
lokal Prognosis [MeSH]
lokal Interleukin-6/blood [MeSH]
lokal Breast Neoplasms/diagnosis [MeSH]
lokal Breast Neoplasms/mortality [MeSH]
lokal Breast Neoplasms/pathology [MeSH]
lokal article
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-9050-7590|https://frl.publisso.de/adhoc/uri/Q2FpcmF0LCBNYW5vbg==|https://frl.publisso.de/adhoc/uri/TmF2aW9uaXMsIEFubmUtU29waGll|https://orcid.org/0000-0003-0481-2893|https://frl.publisso.de/adhoc/uri/QW50b25pdXNzZW4sIENocmlzdGlhbiBTLg==|https://frl.publisso.de/adhoc/uri/VGrDuG5uZWxhbmQsIEFubmU=|https://frl.publisso.de/adhoc/uri/TWVsbGVta2rDpnIsIExlbmU=|https://frl.publisso.de/adhoc/uri/TWFuY2luaSwgRnJhbmNlc2NhIFJvbWFuYQ==|https://frl.publisso.de/adhoc/uri/SGFqamktTG91YXRpLCBNYXJpZW0=|https://frl.publisso.de/adhoc/uri/U2V2ZXJpLCBHaWFubHVjYQ==|https://frl.publisso.de/adhoc/uri/TGUgQ29ybmV0LCBDaGFybG90dGU=|https://orcid.org/0000-0003-3751-3929|https://frl.publisso.de/adhoc/uri/U2NodWx6ZSwgTWF0dGhpYXMgQi4=|https://frl.publisso.de/adhoc/uri/TWFzYWxhLCBHaW92YW5uYQ==|https://frl.publisso.de/adhoc/uri/QWdub2xpLCBDbGF1ZGlh|https://frl.publisso.de/adhoc/uri/U2FjZXJkb3RlLCBDYXJsb3R0YQ==|https://frl.publisso.de/adhoc/uri/Q3JvdXMtQm91LCBNYXJ0YQ==|https://frl.publisso.de/adhoc/uri/U8OhbmNoZXosIE1hcmlhLUpvc2U=|https://frl.publisso.de/adhoc/uri/QW1pYW5vLCBQaWxhcg==|https://frl.publisso.de/adhoc/uri/Q2hpcmxhcXVlLCBNYXLDrWEtRG9sb3Jlcw==|https://frl.publisso.de/adhoc/uri/R3VldmFyYSwgTWFyY2VsYQ==|https://orcid.org/0000-0002-1932-7463|https://orcid.org/0000-0001-6517-1300|https://frl.publisso.de/adhoc/uri/Q2hyaXN0YWtvdWRpLCBTb2ZpYQ==|https://frl.publisso.de/adhoc/uri/R3VudGVyLCBNYXJjIEou|https://frl.publisso.de/adhoc/uri/UmluYWxkaSwgU2FiaW5h|https://frl.publisso.de/adhoc/uri/QWd1ZG8sIEFudG9uaW8=|https://frl.publisso.de/adhoc/uri/RG9zc3VzLCBMYXVyZQ==
1000 Hinweis
  • DeepGreen-ID: 9ff7b747c22e4f82855f97cafc78494b ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Instituto de Salud Carlos III |
  2. Fundación Científica Asociación Española Contra el Cáncer |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Instituto de Salud Carlos III |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fundación Científica Asociación Española Contra el Cáncer |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6496580.rdf
1000 Erstellt am 2025-02-04T14:07:33.576+0100
1000 Erstellt von 322
1000 beschreibt frl:6496580
1000 Zuletzt bearbeitet 2025-09-14T07:10:21.449+0200
1000 Objekt bearb. Sun Sep 14 07:10:21 CEST 2025
1000 Vgl. frl:6496580
1000 Oai Id
  1. oai:frl.publisso.de:frl:6496580 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source