Download
12885_2024_Article_13329.pdf 3,10MB
WeightNameValue
1000 Titel
  • A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level
1000 Autor/in
  1. Vitacolonna, Mario |
  2. Bruch, Roman |
  3. Schneider, Richard |
  4. Jabs, Julia |
  5. Hafner, Mathias |
  6. Reischl, Markus |
  7. Rudolf, Rüdiger |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-12-18
1000 Erschienen in
1000 Quellenangabe
  • 24(1):1542
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12885-024-13329-9 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658419/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Cell Line, Tumor [MeSH]
lokal Microscopy, Confocal/methods [MeSH]
lokal 3D drug testing
lokal Fibroblasts/drug effects [MeSH]
lokal Humans [MeSH]
lokal Apoptosis/drug effects [MeSH]
lokal Antineoplastic Agents/pharmacology [MeSH]
lokal Tumor microenvironment
lokal Drug resistance
lokal Spheroids, Cellular/drug effects [MeSH]
lokal 3D co-culture
lokal Image Processing, Computer-Assisted/methods [MeSH]
lokal Drug Screening Assays, Antitumor/methods [MeSH]
lokal Single-cell analysis
lokal Doxorubicin/pharmacology [MeSH]
lokal Single-Cell Analysis/methods [MeSH]
lokal Research
lokal Machine Learning [MeSH]
lokal Coculture Techniques [MeSH]
lokal Imaging, Three-Dimensional/methods [MeSH]
lokal Deep-learning image analysis
lokal Cell Proliferation/drug effects [MeSH]
lokal Fibroblasts/metabolism [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/Vml0YWNvbG9ubmEsIE1hcmlv|https://frl.publisso.de/adhoc/uri/QnJ1Y2gsIFJvbWFu|https://frl.publisso.de/adhoc/uri/U2NobmVpZGVyLCBSaWNoYXJk|https://frl.publisso.de/adhoc/uri/SmFicywgSnVsaWE=|https://frl.publisso.de/adhoc/uri/SGFmbmVyLCBNYXRoaWFz|https://frl.publisso.de/adhoc/uri/UmVpc2NobCwgTWFya3Vz|https://frl.publisso.de/adhoc/uri/UnVkb2xmLCBSw7xkaWdlcg==
1000 Hinweis
  • DeepGreen-ID: 062bb12a37a8438ab7a8c0779b2c8124 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Hochschule Mannheim |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Hochschule Mannheim |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6497322.rdf
1000 Erstellt am 2025-02-04T16:47:17.475+0100
1000 Erstellt von 322
1000 beschreibt frl:6497322
1000 Zuletzt bearbeitet 2025-09-11T12:29:05.930+0200
1000 Objekt bearb. Thu Sep 11 12:29:05 CEST 2025
1000 Vgl. frl:6497322
1000 Oai Id
  1. oai:frl.publisso.de:frl:6497322 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source