Download
12889_2024_Article_18874.pdf 3,00MB
WeightNameValue
1000 Titel
  • Socioeconomic inequalities in pandemic-induced psychosocial stress in different life domains among the working-age population
1000 Autor/in
  1. Beese, Florian |
  2. Wachtler, Benjamin |
  3. Grabka, Markus M. |
  4. Blume, Miriam |
  5. Kersjes, Christina |
  6. Gutu, Robert |
  7. Mauz, Elvira |
  8. Hoebel, Jens |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-28
1000 Erschienen in
1000 Quellenangabe
  • 24(1):1421
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12889-024-18874-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131271/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Psychosocial stress is considered a risk factor for physical and mental ill-health. Evidence on socioeconomic inequalities with regard to the psychosocial consequences of the COVID-19 pandemic in Germany is still limited. We aimed to investigate how pandemic-induced psychosocial stress (PIPS) in different life domains differed between socioeconomic groups.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Data came from the German Corona-Monitoring nationwide study – wave 2 (RKI-SOEP-2, November 2021–February 2022). PIPS was assessed using 4-point Likert scales with reference to the following life domains: family, partnership, own financial situation, psychological well-being, leisure activity, social life and work/school situation. Responses were dichotomised into “not stressed/slightly stressed/rather stressed” (0) versus “highly stressed” (1). The sample was restricted to the working-age population in Germany (age = 18–67 years, <jats:italic>n</jats:italic> = 8,402). Prevalence estimates of high PIPS were calculated by sex, age, education and income. Adjusted prevalence ratios (PRs) were estimated using Poisson regression to investigate the association between education/income and PIPS; high education and income were the reference groups.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The highest stress levels were reported in the domains social life and leisure activity. Women and younger participants reported high stress levels more frequently. The highest inequalities were found regarding people’s own financial situation, and PIPS was higher in low vs. high income groups (PR 5.54, 95% CI 3.61–8.52). Inequalities were also found regarding partnerships with higher PIPS in low vs. high education groups (PR 1.68, 95% CI 1.13–2.49) – and psychological well-being with higher PIPS in low vs. high income groups (PR 1.52, 95% CI 1.14–2.04).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Socioeconomic inequalities in PIPS were found for different life domains. Generally, psychosocial support and preventive interventions to help people cope with stress in a pandemic context should be target-group-specific, addressing the particular needs and circumstances of certain socioeconomic groups.</jats:p> </jats:sec>
1000 Sacherschließung
gnd 1206347392 COVID-19
lokal Adolescent [MeSH]
lokal Female [MeSH]
lokal Aged [MeSH]
lokal Socioeconomic position
lokal Adult [MeSH]
lokal Psychosocial stress
lokal Humans [MeSH]
lokal Stress, Psychological/epidemiology [MeSH]
lokal COVID-19/psychology [MeSH]
lokal Middle Aged [MeSH]
lokal Socioeconomic Factors [MeSH]
lokal Germany/epidemiology [MeSH]
lokal Life domains
lokal Pandemics [MeSH]
lokal Stress, Psychological/psychology [MeSH]
lokal RKI-SOEP-2
lokal Health Status Disparities [MeSH]
lokal Male [MeSH]
lokal COVID-19 pandemic
lokal Research
lokal Young Adult [MeSH]
lokal COVID-19/epidemiology [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/QmVlc2UsIEZsb3JpYW4=|https://frl.publisso.de/adhoc/uri/V2FjaHRsZXIsIEJlbmphbWlu|https://frl.publisso.de/adhoc/uri/R3JhYmthLCBNYXJrdXMgTS4=|https://frl.publisso.de/adhoc/uri/Qmx1bWUsIE1pcmlhbQ==|https://frl.publisso.de/adhoc/uri/S2Vyc2plcywgQ2hyaXN0aW5h|https://frl.publisso.de/adhoc/uri/R3V0dSwgUm9iZXJ0|https://frl.publisso.de/adhoc/uri/TWF1eiwgRWx2aXJh|https://frl.publisso.de/adhoc/uri/SG9lYmVsLCBKZW5z
1000 Hinweis
  • DeepGreen-ID: c4964120dcde412db6064b3361af22a6 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Robert Koch Institut |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Robert Koch Institut |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6497466.rdf
1000 Erstellt am 2025-02-04T17:26:05.496+0100
1000 Erstellt von 322
1000 beschreibt frl:6497466
1000 Zuletzt bearbeitet 2025-09-12T22:46:55.258+0200
1000 Objekt bearb. Fri Sep 12 22:46:55 CEST 2025
1000 Vgl. frl:6497466
1000 Oai Id
  1. oai:frl.publisso.de:frl:6497466 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source