Download
00392_2023_Article_2345.pdf 1,04MB
WeightNameValue
1000 Titel
  • Prognostic utility of a multi-biomarker panel in patients with suspected myocardial infarction
1000 Autor/in
  1. Toprak, Betül |
  2. Weimann, Jessica |
  3. Lehmacher, Jonas |
  4. Haller, Paul M. |
  5. Hartikainen, Tau S. |
  6. Schock, Alina |
  7. Karakas, Mahir |
  8. Renné, Thomas |
  9. Zeller, Tanja |
  10. Twerenbold, Raphael |
  11. Sörensen, Nils A. |
  12. Westermann, Dirk |
  13. Neumann, Johannes T. |
1000 Verlag Springer Berlin Heidelberg
1000 Erscheinungsjahr 2023
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2023-12-11
1000 Erschienen in
1000 Quellenangabe
  • 113(12):1682-1691
1000 Copyrightjahr
  • 2023
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00392-023-02345-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579167/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The accurate identification of patients with high cardiovascular risk in suspected myocardial infarction (MI) is an unmet clinical need. Therefore, we sought to investigate the prognostic utility of a multi-biomarker panel with 29 different biomarkers in in 748 consecutive patients with symptoms indicative of MI using a machine learning-based approach.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>Incident major cardiovascular events (MACE) were documented within 1 year after the index admission. The selection of the best multi-biomarker model was performed using the least absolute shrinkage and selection operator (LASSO). The independent and additive utility of selected biomarkers was compared to a clinical reference model and the Global Registry of Acute Coronary Events (GRACE) Score, respectively. Findings were validated using internal cross-validation.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Median age of the study population was 64 years. At 1 year of follow-up, 160 cases of incident MACE were documented. 16 of the investigated 29 biomarkers were significantly associated with 1-year MACE. Three biomarkers including NT-proBNP (HR per SD 1.24), Apolipoprotein A-I (Apo A-I; HR per SD 0.98) and kidney injury molecule-1 (KIM-1; HR per SD 1.06) were identified as independent predictors of 1-year MACE. Although the discriminative ability of the selected multi-biomarker model was rather moderate, the addition of these biomarkers to the clinical reference model and the GRACE score improved model performances markedly (∆C-index 0.047 and 0.04, respectively).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>NT-proBNP, Apo A-I and KIM-1 emerged as strongest independent predictors of 1-year MACE in patients with suspected MI. Their integration into clinical risk prediction models may improve personalized risk stratification.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical abstract</jats:title> <jats:p>Prognostic utility of a multi-biomarker approach in suspected myocardial infarction. In a cohort of 748 patients with symptoms indicative of myocardial infarction (MI) to the emergency department, we measured a 29-biomarker panel and performed regressions, machine learning (ML)-based variable selection and discriminative/reclassification analyses. We identified three biomarkers as top predictors for 1-year major adverse cardiovascular events (MACE). Their integration into a clinical risk prediction model and the Global Registry of Acute Coronary Events (GRACE) Score allowed for marked improvement in discrimination and reclassification for 1-year MACE. <jats:italic>Apo</jats:italic> apolipoprotein; <jats:italic>CRP</jats:italic> C-reactive protein; <jats:italic>CRS</jats:italic> clinical risk score; <jats:italic>ECG</jats:italic> electrocardiogram; <jats:italic>EN-RAGE</jats:italic> extracellular newly identified receptor for advanced glycation end-products binding protein; <jats:italic>FABP</jats:italic> fatty acid–binding protein; <jats:italic>GS</jats:italic> Grace Score; <jats:italic>hs-cTnI</jats:italic> high-sensitivity cardiac troponin I; <jats:italic>KIM-1</jats:italic> kidney injury molecule–1; <jats:italic>LASSO</jats:italic> least absolute shrinkage and selection operator; <jats:italic>MACE</jats:italic> major adverse cardiovascular events; <jats:italic>MI</jats:italic> myocardial infarction; <jats:italic>NRI</jats:italic> net reclassification improvement; <jats:italic>NT-proBNP</jats:italic> N-terminal prohormone of brain natriuretic peptide.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Follow-Up Studies [MeSH]
lokal Apolipoprotein A-I/blood [MeSH]
lokal Aged [MeSH]
lokal Biomarkers/blood [MeSH]
lokal Humans [MeSH]
lokal Chest pain
lokal Natriuretic Peptide, Brain/blood [MeSH]
lokal Hepatitis A Virus Cellular Receptor 1/blood [MeSH]
lokal Predictive Value of Tests [MeSH]
lokal Middle Aged [MeSH]
lokal Risk prediction
lokal Biomarker
lokal Acute coronary syndrome
lokal Male [MeSH]
lokal Peptide Fragments/blood [MeSH]
lokal Original Paper
lokal Prognosis [MeSH]
lokal Myocardial Infarction/diagnosis [MeSH]
lokal Machine Learning [MeSH]
lokal Myocardial Infarction/blood [MeSH]
lokal Risk Assessment/methods [MeSH]
lokal NT-proBNP
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-5233-0680|https://frl.publisso.de/adhoc/uri/V2VpbWFubiwgSmVzc2ljYQ==|https://frl.publisso.de/adhoc/uri/TGVobWFjaGVyLCBKb25hcw==|https://frl.publisso.de/adhoc/uri/SGFsbGVyLCBQYXVsIE0u|https://frl.publisso.de/adhoc/uri/SGFydGlrYWluZW4sIFRhdSBTLg==|https://frl.publisso.de/adhoc/uri/U2Nob2NrLCBBbGluYQ==|https://frl.publisso.de/adhoc/uri/S2FyYWthcywgTWFoaXI=|https://frl.publisso.de/adhoc/uri/UmVubsOpLCBUaG9tYXM=|https://frl.publisso.de/adhoc/uri/WmVsbGVyLCBUYW5qYQ==|https://frl.publisso.de/adhoc/uri/VHdlcmVuYm9sZCwgUmFwaGFlbA==|https://frl.publisso.de/adhoc/uri/U8O2cmVuc2VuLCBOaWxzIEEu|https://frl.publisso.de/adhoc/uri/V2VzdGVybWFubiwgRGlyaw==|https://frl.publisso.de/adhoc/uri/TmV1bWFubiwgSm9oYW5uZXMgVC4=
1000 Hinweis
  • DeepGreen-ID: 3d0e5ac7501c4e26a526985e919a33d4 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsches Zentrum für Herz-Kreislaufforschung |
  2. Abbott Diagnostics |
  3. Prevencio |
  4. Universitätsklinikum Hamburg-Eppendorf (UKE) |
1000 Fördernummer
  1. -
  2. -
  3. -
  4. -
1000 Förderprogramm
  1. -
  2. -
  3. -
  4. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsches Zentrum für Herz-Kreislaufforschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Abbott Diagnostics |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Prevencio |
    1000 Förderprogramm -
    1000 Fördernummer -
  4. 1000 joinedFunding-child
    1000 Förderer Universitätsklinikum Hamburg-Eppendorf (UKE) |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6497791.rdf
1000 Erstellt am 2025-02-04T19:16:07.412+0100
1000 Erstellt von 322
1000 beschreibt frl:6497791
1000 Zuletzt bearbeitet 2025-09-11T22:44:13.291+0200
1000 Objekt bearb. Thu Sep 11 22:44:13 CEST 2025
1000 Vgl. frl:6497791
1000 Oai Id
  1. oai:frl.publisso.de:frl:6497791 |
  2. oai:frl.publisso.de:frl:6497791 |
  3. oai:frl.publisso.de:frl:6497791 |
  4. oai:frl.publisso.de:frl:6497791 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source