Download
13071_2024_Article_6417.pdf 1,05MB
WeightNameValue
1000 Titel
  • Automated classification of mixed populations of Aedes aegypti and Culex quinquefasciatus mosquitoes under field conditions
1000 Autor/in
  1. Njaime, Fábio Castelo Branco Fontes Paes |
  2. Máspero, Renato Cesar |
  3. Leandro, André de Souza |
  4. Maciel-de-Freitas, Rafael |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-19
1000 Erschienen in
1000 Quellenangabe
  • 17(1):399
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13071-024-06417-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414234/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: <jats:italic>Aedes aegypti</jats:italic> and <jats:italic>Culex quinquefasciatus</jats:italic>. Mosquito classification was based on previous models developed and trained using European populations of <jats:italic>Aedes albopictus</jats:italic> and <jats:italic>Culex pipiens</jats:italic>.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The VECTRACK sensor was able to discriminate the target mosquitoes (<jats:italic>Aedes</jats:italic> and <jats:italic>Culex</jats:italic> genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between <jats:italic>Aedes</jats:italic> and <jats:italic>Culex</jats:italic> achieved an accuracy of 93.7%. The sex classification worked better for <jats:italic>Cx. quinquefasciatus</jats:italic> (accuracy: 95%; specificity: 95.3%) than for <jats:italic>Ae. aegypti</jats:italic> (accuracy: 92.1%; specificity: 88.4%).</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of <jats:italic>Ae. albopictus</jats:italic> worked well for Brazilian <jats:italic>Ae. aegypti</jats:italic> populations, and the model developed and trained for <jats:italic>Cx. pipiens</jats:italic> was able to classify Brazilian <jats:italic>Cx. quinquefasciatus</jats:italic> populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.</jats:p> </jats:sec><jats:sec> <jats:title>Graphical Abstract</jats:title> </jats:sec>
1000 Sacherschließung
lokal Female [MeSH]
lokal Mosquito Control/instrumentation [MeSH]
lokal Surveillance
lokal Wing beat
lokal Animals [MeSH]
lokal Mosquito Vectors/classification [MeSH]
lokal Culex/classification [MeSH]
lokal Smart trap
lokal Male [MeSH]
lokal Research
lokal Mosquito Control/methods [MeSH]
lokal Aedes/physiology [MeSH]
lokal Brazil [MeSH]
lokal Aedes/classification [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/TmphaW1lLCBGw6FiaW8gQ2FzdGVsbyBCcmFuY28gRm9udGVzIFBhZXM=|https://frl.publisso.de/adhoc/uri/TcOhc3Blcm8sIFJlbmF0byBDZXNhcg==|https://frl.publisso.de/adhoc/uri/TGVhbmRybywgQW5kcsOpIGRlIFNvdXph|https://frl.publisso.de/adhoc/uri/TWFjaWVsLWRlLUZyZWl0YXMsIFJhZmFlbA==
1000 Hinweis
  • DeepGreen-ID: c350c96c8c824c7896fe7ae19b07b358 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. HORIZON Research and Innovation Actions |
  2. Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer HORIZON Research and Innovation Actions |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6498718.rdf
1000 Erstellt am 2025-02-04T22:43:50.781+0100
1000 Erstellt von 322
1000 beschreibt frl:6498718
1000 Zuletzt bearbeitet 2025-09-14T12:18:37.569+0200
1000 Objekt bearb. Sun Sep 14 12:18:37 CEST 2025
1000 Vgl. frl:6498718
1000 Oai Id
  1. oai:frl.publisso.de:frl:6498718 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source