Download
40001_2024_Article_1884.pdf 1,21MB
WeightNameValue
1000 Titel
  • Opportunistic screening for long-term muscle wasting in critically ill patients: insights from an acute pancreatitis cohort
1000 Autor/in
  1. Kolck, Johannes |
  2. Hosse, Clarissa |
  3. Leimbach, Alexandra |
  4. Beetz, Nick L. |
  5. Auer, Timo A. |
  6. Collettini, Federico |
  7. Fehrenbach, Uli |
  8. Pille, Christian |
  9. Geisel, Dominik |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-22
1000 Erschienen in
1000 Quellenangabe
  • 29(1):294
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40001-024-01884-7 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110383/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Objectives</jats:title> <jats:p>To assess the feasibility of long-term muscle monitoring, we implemented an AI-guided segmentation approach on clinically indicated Computed Tomography (CT) examinations conducted throughout the hospitalization period of patients admitted to the intensive care unit (ICU) with acute pancreatitis (AP). In addition, we aimed to investigate the potential of muscle monitoring for early detection of patients at nutritional risk and those experiencing adverse outcomes. This cohort served as a model for potential integration into clinical practice.</jats:p> </jats:sec><jats:sec> <jats:title>Materials</jats:title> <jats:p>Retrospective cohort study including 100 patients suffering from AP that underwent a minimum of three CT scans during hospitalization, totaling 749 assessments. Sequential segmentation of psoas muscle area (PMA) was performed and was relative muscle loss per day for the entire monitoring period, as well as for the interval between each consecutive scan was calculated. Subgroup and outcome analyses were performed including ANOVA. Discriminatory power of muscle decay rates was evaluated using ROC analysis.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Monitoring PMA decay revealed significant long-term losses of 48.20% throughout the hospitalization period, with an average daily decline of 0.98%. Loss rates diverged significantly between survival groups, with 1.34% PMA decay per day among non-survivors vs. 0.74% in survivors. Overweight patients exhibited significantly higher total PMA losses (52.53 vs. 42.91%; <jats:italic>p</jats:italic> = 0.02) and average PMA loss per day (of 1.13 vs. 0.80%; <jats:italic>p</jats:italic> = 0.039). The first and the maximum decay rate, in average available after 6.16 and 17.03 days after ICU admission, showed convincing discriminatory power for survival in ROC analysis (AUC 0.607 and 0.718). Both thresholds for maximum loss (at 3.23% decay per day) and for the initial loss rate (at 1.98% per day) proved to be significant predictors of mortality.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The innovative AI-based PMA segmentation method proved robust and effortless, enabling the first comprehensive assessment of muscle wasting in a large cohort of intensive care pancreatitis patients. Findings revealed significant muscle wasting (48.20% on average), particularly notable in overweight individuals. Higher rates of initial and maximum muscle loss, detectable early, correlated strongly with survival. Integrating this tool into routine clinical practice will enable continuous muscle status tracking and early identification of those at risk for unfavorable outcomes.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Critical care
lokal Female [MeSH]
lokal Computed tomography
lokal Aged [MeSH]
lokal Adult [MeSH]
lokal Psoas Muscles/diagnostic imaging [MeSH]
lokal Humans [MeSH]
lokal Pancreatitis/diagnostic imaging [MeSH]
lokal Artificial intelligence
lokal Retrospective Studies [MeSH]
lokal Middle Aged [MeSH]
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Hospitalization/statistics
lokal Muscular Atrophy/etiology [MeSH]
lokal Critical Illness [MeSH]
lokal Acute Disease [MeSH]
lokal Male [MeSH]
lokal Muscle wasting
lokal Intensive Care Units [MeSH]
lokal Muscular Atrophy/diagnostic imaging [MeSH]
lokal Research
lokal Muscular Atrophy/diagnosis [MeSH]
lokal Acute pancreatitis
lokal Pancreatitis/complications [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-9843-2247|https://frl.publisso.de/adhoc/uri/SG9zc2UsIENsYXJpc3Nh|https://frl.publisso.de/adhoc/uri/TGVpbWJhY2gsIEFsZXhhbmRyYQ==|https://frl.publisso.de/adhoc/uri/QmVldHosIE5pY2sgTC4=|https://frl.publisso.de/adhoc/uri/QXVlciwgVGltbyBBLg==|https://frl.publisso.de/adhoc/uri/Q29sbGV0dGluaSwgRmVkZXJpY28=|https://frl.publisso.de/adhoc/uri/RmVocmVuYmFjaCwgVWxp|https://frl.publisso.de/adhoc/uri/UGlsbGUsIENocmlzdGlhbg==|https://frl.publisso.de/adhoc/uri/R2Vpc2VsLCBEb21pbmlr
1000 Hinweis
  • DeepGreen-ID: db0d413345694f9cb678a6ba7a01a33f ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Charité – Universitätsmedizin Berlin |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Charité – Universitätsmedizin Berlin |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6499621.rdf
1000 Erstellt am 2025-02-05T03:21:34.508+0100
1000 Erstellt von 322
1000 beschreibt frl:6499621
1000 Zuletzt bearbeitet 2025-09-13T02:57:15.778+0200
1000 Objekt bearb. Sat Sep 13 02:57:15 CEST 2025
1000 Vgl. frl:6499621
1000 Oai Id
  1. oai:frl.publisso.de:frl:6499621 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source