Download
11548_2024_Article_3103.pdf 2,25MB
WeightNameValue
1000 Titel
  • An interactive task-based method for the avoidance of metal artifacts in CBCT
1000 Autor/in
  1. Rohleder, Maximilian |
  2. Thies, Mareike |
  3. Riedl, Sophie |
  4. Bullert, Benno |
  5. Gierse, Jula |
  6. Privalov, Maxim |
  7. Mandelka, Eric |
  8. Vetter, Sven |
  9. Maier, Andreas |
  10. Kreher, Björn |
1000 Verlag
  • Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-23
1000 Erschienen in
1000 Quellenangabe
  • 19(7):1399-1407
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03103-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230992/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm’s tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal Cone-Beam Computed Tomography/methods [MeSH]
lokal Humans [MeSH]
lokal CT Trajectory Optimization
lokal Pedicle Screws [MeSH]
lokal Cone-beam CT
lokal Cadaver [MeSH]
lokal Artifacts [MeSH]
lokal Imaging, Three-Dimensional/methods [MeSH]
lokal Metal Artifact Avoidance
lokal Human Computer Interaction
lokal Metals [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-1758-9056|https://orcid.org/0000-0002-1364-4337|https://orcid.org/0009-0004-2911-3444|https://orcid.org/0009-0003-3539-4839|https://orcid.org/0000-0002-3955-0339|https://orcid.org/0000-0001-5360-2054|https://orcid.org/0000-0002-7337-2783|https://orcid.org/0000-0001-8024-9276|https://orcid.org/0000-0002-9550-5284|https://orcid.org/0009-0009-4656-5705
1000 Hinweis
  • DeepGreen-ID: 48e774b522964501ad19deb2adbd508a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Friedrich-Alexander-Universität Erlangen-Nürnberg |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Friedrich-Alexander-Universität Erlangen-Nürnberg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6500791.rdf
1000 Erstellt am 2025-02-05T11:18:27.269+0100
1000 Erstellt von 322
1000 beschreibt frl:6500791
1000 Zuletzt bearbeitet 2025-07-30T08:17:02.101+0200
1000 Objekt bearb. Wed Jul 30 08:17:02 CEST 2025
1000 Vgl. frl:6500791
1000 Oai Id
  1. oai:frl.publisso.de:frl:6500791 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source