Download
11548_2024_Article_3267.pdf 2,60MB
WeightNameValue
1000 Titel
  • MRI-compatible and sensorless haptic feedback for cable-driven medical robotics to perform teleoperated needle-based interventions
1000 Autor/in
  1. Vogt, Ivan |
  2. Eisenmann, Marcel |
  3. Schlünz, Anton |
  4. Kowal, Robert |
  5. Düx, Daniel |
  6. Thormann, Maximilian |
  7. Glandorf, Julian Magnus Wilhelm |
  8. Yerdelen, Seben Sena |
  9. Georgiades, Marilena |
  10. Odenbach, Robert |
  11. Hensen, Bennet |
  12. Gutberlet, Marcel |
  13. Wacker, Frank |
  14. Fischbach, Frank |
  15. Rose, Georg |
1000 Verlag
  • Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-09-12
1000 Erschienen in
1000 Quellenangabe
  • 20(1):179-189
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03267-z |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760606/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:sec> <jats:title>Purpose</jats:title> <jats:p>Surgical robotics have demonstrated their significance in assisting physicians during minimally invasive surgery. Especially, the integration of haptic and tactile feedback technologies can enhance the surgeon’s performance and overall patient outcomes. However, the current state-of-the-art lacks such interaction feedback opportunities, especially in robotic-assisted interventional magnetic resonance imaging (iMRI), which is gaining importance in clinical practice, specifically for percutaneous needle punctures.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods</jats:title> <jats:p>The cable-driven ‘Micropositioning Robotics for Image-Guided Surgery’ (µRIGS) system utilized the back-electromotive force effect of the stepper motor load to measure cable tensile forces without external sensors, employing the TMC5160 motor driver. The aim was to generate a sensorless haptic feedback (SHF) for remote needle advancement, incorporating collision detection and homing capabilities for internal automation processes. Three different phantoms capable of mimicking soft tissue were used to evaluate the difference in force feedback between manual needle puncture and the SHF, both technically and in terms of user experience.</jats:p> </jats:sec> <jats:sec> <jats:title>Results</jats:title> <jats:p>The SHF achieved a sampling rate of 800 Hz and a mean force resolution of 0.26 ± 0.22 N, primarily dependent on motor current and rotation speed, with a mean maximum force of 15 N. In most cases, the SHF data aligned with the intended phantom-related force progression. The evaluation of the user study demonstrated no significant differences between the SHF technology and manual puncturing.</jats:p> </jats:sec> <jats:sec> <jats:title>Conclusion</jats:title> <jats:p>The presented SHF of the µRIGS system introduced a novel MR-compatible technique to bridge the gap between medical robotics and interaction during real-time needle-based interventions.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Teleoperation
lokal Humans [MeSH]
lokal Haptic feedback
lokal Sensorless force measurement
lokal Telemedicine/instrumentation [MeSH]
lokal Needles [MeSH]
lokal Original Article
lokal μRIGS
lokal Feedback [MeSH]
lokal Image-guided interventions
lokal Phantoms, Imaging [MeSH]
lokal Equipment Design [MeSH]
lokal Magnetic Resonance Imaging, Interventional/instrumentation [MeSH]
lokal Robotics/instrumentation [MeSH]
lokal Magnetic Resonance Imaging/methods [MeSH]
lokal Robotic Surgical Procedures/methods [MeSH]
lokal Surgical robotics
lokal Robotic Surgical Procedures/instrumentation [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-6089-7655|https://orcid.org/0009-0004-1228-2858|https://orcid.org/0009-0007-4771-5686|https://orcid.org/0000-0002-9842-3700|https://orcid.org/0000-0003-3978-4458|https://orcid.org/0000-0003-3822-8871|https://orcid.org/0000-0003-1927-9876|https://orcid.org/0009-0008-0763-0757|https://orcid.org/0009-0002-3330-1566|https://orcid.org/0000-0002-4831-9550|https://orcid.org/0000-0001-6966-273X|https://orcid.org/0000-0002-6164-8973|https://orcid.org/0000-0002-6285-8403|https://orcid.org/0000-0001-5554-7327|https://orcid.org/0000-0002-2215-150X
1000 Hinweis
  • DeepGreen-ID: c8b2f23eb4f7488a9ebda1caa4ca1a52 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Otto von Guericke University Magdeburg |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Otto von Guericke University Magdeburg |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6501236.rdf
1000 Erstellt am 2025-02-05T13:08:56.608+0100
1000 Erstellt von 322
1000 beschreibt frl:6501236
1000 Zuletzt bearbeitet 2025-07-30T12:58:33.017+0200
1000 Objekt bearb. Wed Jul 30 12:58:33 CEST 2025
1000 Vgl. frl:6501236
1000 Oai Id
  1. oai:frl.publisso.de:frl:6501236 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source