Download
12874_2024_Article_2190.pdf 1,84MB
WeightNameValue
1000 Titel
  • Optimal futility stopping boundaries for binary endpoints
1000 Autor/in
  1. Freitag, Michaela Maria |
  2. Li, Xieran |
  3. Rauch, Geraldine |
1000 Verlag
  • BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-28
1000 Erschienen in
1000 Quellenangabe
  • 24(1):80
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s12874-024-02190-w |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331636/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Group sequential designs incorporating the option to stop for futility at the time point of an interim analysis can save time and resources. Thereby, the choice of the futility boundary importantly impacts the design’s resulting performance characteristics, including the power and probability to correctly or wrongly stop for futility. Several authors contributed to the topic of selecting good futility boundaries. For binary endpoints, Simon’s designs (Control Clin Trials 10:1–10, 1989) are commonly used two-stage designs for single-arm phase II studies incorporating futility stopping. However, Simon’s optimal design frequently yields an undesirably high probability of falsely declaring futility after the first stage, and in Simon’s minimax design often a high proportion of the planned sample size is already evaluated at the interim analysis leaving only limited benefit in case of an early stop.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>This work focuses on the optimality criteria introduced by Schüler et al. (BMC Med Res Methodol 17:119, 2017) and extends their approach to binary endpoints in single-arm phase II studies. An algorithm for deriving optimized futility boundaries is introduced, and the performance of study designs implementing this concept of optimal futility boundaries is compared to the common Simon’s minimax and optimal designs, as well as modified versions of these designs by Kim et al. (Oncotarget 10:4255–61, 2019).</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The introduced optimized futility boundaries aim to maximize the probability of correctly stopping for futility in case of small or opposite effects while also setting constraints on the time point of the interim analysis, the power loss, and the probability of stopping the study wrongly, i.e. stopping the study even though the treatment effect shows promise. Overall, the operating characteristics, such as maximum sample size and expected sample size, are comparable to those of the classical and modified Simon’s designs and sometimes better. Unlike Simon’s designs, which have binding stopping rules, the optimized futility boundaries proposed here are not adjusted to exhaust the full targeted nominal significance level and are thus still valid for non-binding applications.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>The choice of the futility boundary and the time point of the interim analysis have a major impact on the properties of the study design. Therefore, they should be thoroughly investigated at the planning stage. The introduced method of selecting optimal futility boundaries provides a more flexible alternative to Simon’s designs with non-binding stopping rules. The probability of wrongly stopping for futility is minimized and the optimized futility boundaries don’t exhibit the unfavorable properties of an undesirably high probability of falsely declaring futility or a high proportion of the planned sample evaluated at the interim time point.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Single-arm phase II trial
lokal Algorithms [MeSH]
lokal Futility stop
lokal Binary endpoint
lokal Group sequential design
lokal Research
lokal Humans [MeSH]
lokal Medical Futility [MeSH]
lokal Research Design [MeSH]
lokal Probability [MeSH]
lokal Sample Size [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0009-0009-0924-1277|https://orcid.org/0000-0002-1443-4032|https://orcid.org/0000-0002-2451-1660
1000 Hinweis
  • DeepGreen-ID: 82d8387fdd9d492ca54621a85fff57a3 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Charité – Universitätsmedizin Berlin |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
  1. Optimal futility stopping boundaries for binary endpoints
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Charité – Universitätsmedizin Berlin |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6502536.rdf
1000 Erstellt am 2025-02-05T17:02:04.744+0100
1000 Erstellt von 322
1000 beschreibt frl:6502536
1000 Zuletzt bearbeitet 2025-07-30T13:17:22.029+0200
1000 Objekt bearb. Wed Jul 30 13:17:22 CEST 2025
1000 Vgl. frl:6502536
1000 Oai Id
  1. oai:frl.publisso.de:frl:6502536 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source