Download
11548_2024_Article_3226.pdf 1,48MB
WeightNameValue
1000 Titel
  • Towards multimodal graph neural networks for surgical instrument anticipation
1000 Autor/in
  1. Wagner, Lars |
  2. Schneider, Dennis N. |
  3. Mayer, Leon |
  4. Jell, Alissa |
  5. Müller, Carolin |
  6. Lenz, Alexander |
  7. Knoll, Alois |
  8. Wilhelm, Dirk |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-07-10
1000 Erschienen in
1000 Quellenangabe
  • 19(10):1929-1937
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03226-8 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442600/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>Decision support systems and context-aware assistance in the operating room have emerged as the key clinical applications supporting surgeons in their daily work and are generally based on single modalities. The model- and knowledge-based integration of multimodal data as a basis for decision support systems that can dynamically adapt to the surgical workflow has not yet been established. Therefore, we propose a knowledge-enhanced method for fusing multimodal data for anticipation tasks.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>We developed a holistic, multimodal graph-based approach combining imaging and non-imaging information in a knowledge graph representing the intraoperative scene of a surgery. Node and edge features of the knowledge graph are extracted from suitable data sources in the operating room using machine learning. A spatiotemporal graph neural network architecture subsequently allows for interpretation of relational and temporal patterns within the knowledge graph. We apply our approach to the downstream task of instrument anticipation while presenting a suitable modeling and evaluation strategy for this task.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>Our approach achieves an F1 score of 66.86% in terms of instrument anticipation, allowing for a seamless surgical workflow and adding a valuable impact for surgical decision support systems. A resting recall of 63.33% indicates the non-prematurity of the anticipations.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>This work shows how multimodal data can be combined with the topological properties of an operating room in a graph-based approach. Our multimodal graph architecture serves as a basis for context-sensitive decision support systems in laparoscopic surgery considering a comprehensive intraoperative operating scene.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Original Article
lokal Surgical instrument anticipation
lokal Decision Support Systems, Clinical [MeSH]
lokal Surgical data science
lokal Workflow [MeSH]
lokal Humans [MeSH]
lokal Operating Rooms [MeSH]
lokal Surgical process modeling
lokal Machine Learning [MeSH]
lokal Surgery, Computer-Assisted/methods [MeSH]
lokal Graph neural networks
lokal Neural Networks, Computer [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-3021-4152|https://frl.publisso.de/adhoc/uri/U2NobmVpZGVyLCBEZW5uaXMgTi4=|https://frl.publisso.de/adhoc/uri/TWF5ZXIsIExlb24=|https://orcid.org/0000-0002-7153-3803|https://orcid.org/0000-0001-6258-6172|https://frl.publisso.de/adhoc/uri/TGVueiwgQWxleGFuZGVy|https://frl.publisso.de/adhoc/uri/S25vbGwsIEFsb2lz|https://frl.publisso.de/adhoc/uri/V2lsaGVsbSwgRGlyaw==
1000 Hinweis
  • DeepGreen-ID: f9e0ca2cd1e145b9ac5c366918d29f8a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie |
1000 Fördernummer
  1. -
1000 Förderprogramm
  1. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6505655.rdf
1000 Erstellt am 2025-02-06T08:14:44.662+0100
1000 Erstellt von 322
1000 beschreibt frl:6505655
1000 Zuletzt bearbeitet 2025-09-14T19:30:12.939+0200
1000 Objekt bearb. Sun Sep 14 19:30:12 CEST 2025
1000 Vgl. frl:6505655
1000 Oai Id
  1. oai:frl.publisso.de:frl:6505655 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source