Download
13148_2024_Article_1657.pdf 2,09MB
WeightNameValue
1000 Titel
  • Head and neck cancer of unknown primary: unveiling primary tumor sites through machine learning on DNA methylation profiles
1000 Autor/in
  1. Stark, Leonhard |
  2. Kasajima, Atsuko |
  3. Stögbauer, Fabian |
  4. Schmidl, Benedikt |
  5. Rinecker, Jakob |
  6. Holzmann, Katharina |
  7. Färber, Sarah |
  8. Pfarr, Nicole |
  9. Steiger, Katja |
  10. Wollenberg, Barbara |
  11. Ruland, Jürgen |
  12. Winter, Christof |
  13. Wirth, Markus |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-25
1000 Erschienen in
1000 Quellenangabe
  • 16(1):47
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s13148-024-01657-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964705/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>The unknown tissue of origin in head and neck cancer of unknown primary (hnCUP) leads to invasive diagnostic procedures and unspecific and potentially inefficient treatment options for patients. The most common histologic subtype, squamous cell carcinoma, can stem from various tumor primary sites, including the oral cavity, oropharynx, larynx, head and neck skin, lungs, and esophagus. DNA methylation profiles are highly tissue-specific and have been successfully used to classify tissue origin. We therefore developed a support vector machine (SVM) classifier trained with publicly available DNA methylation profiles of commonly cervically metastasizing squamous cell carcinomas (<jats:italic>n</jats:italic> = 1103) in order to identify the primary tissue of origin of our own cohort of squamous cell hnCUP patient’s samples (<jats:italic>n</jats:italic> = 28). Methylation analysis was performed with Infinium MethylationEPIC v1.0 BeadChip by Illumina.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>The SVM algorithm achieved the highest overall accuracy of tested classifiers, with 87%. Squamous cell hnCUP samples on DNA methylation level resembled squamous cell carcinomas commonly metastasizing into cervical lymph nodes. The most frequently predicted cancer localization was the oral cavity in 11 cases (39%), followed by the oropharynx and larynx (both 7, 25%), skin (2, 7%), and esophagus (1, 4%). These frequencies concord with the expected distribution of lymph node metastases in epidemiological studies.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusions</jats:title> <jats:p>On DNA methylation level, hnCUP is comparable to primary tumor tissue cancer types that commonly metastasize to cervical lymph nodes. Our SVM-based classifier can accurately predict these cancers’ tissues of origin and could significantly reduce the invasiveness of hnCUP diagnostics and enable a more precise therapy after clinical validation.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Humans [MeSH]
lokal Classifier
lokal Neoplasms, Unknown Primary/diagnosis [MeSH]
lokal Head and Neck Neoplasms/genetics [MeSH]
lokal Neoplasms, Unknown Primary/genetics [MeSH]
lokal Head and Neck Neoplasms/diagnosis [MeSH]
lokal Carcinoma, Squamous Cell/diagnosis [MeSH]
lokal CUP
lokal HNSCC
lokal DNA Methylation [MeSH]
lokal Research
lokal Neoplasms, Unknown Primary/pathology [MeSH]
lokal Machine Learning [MeSH]
lokal Carcinoma, Squamous Cell/genetics [MeSH]
lokal Carcinoma, Squamous Cell/pathology [MeSH]
lokal DNA methylation
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/U3RhcmssIExlb25oYXJk|https://frl.publisso.de/adhoc/uri/S2FzYWppbWEsIEF0c3Vrbw==|https://frl.publisso.de/adhoc/uri/U3TDtmdiYXVlciwgRmFiaWFu|https://frl.publisso.de/adhoc/uri/U2NobWlkbCwgQmVuZWRpa3Q=|https://frl.publisso.de/adhoc/uri/UmluZWNrZXIsIEpha29i|https://frl.publisso.de/adhoc/uri/SG9sem1hbm4sIEthdGhhcmluYQ==|https://frl.publisso.de/adhoc/uri/RsOkcmJlciwgU2FyYWg=|https://frl.publisso.de/adhoc/uri/UGZhcnIsIE5pY29sZQ==|https://frl.publisso.de/adhoc/uri/U3RlaWdlciwgS2F0amE=|https://frl.publisso.de/adhoc/uri/V29sbGVuYmVyZywgQmFyYmFyYQ==|https://frl.publisso.de/adhoc/uri/UnVsYW5kLCBKw7xyZ2Vu|https://frl.publisso.de/adhoc/uri/V2ludGVyLCBDaHJpc3RvZg==|https://frl.publisso.de/adhoc/uri/V2lydGgsIE1hcmt1cw==
1000 Hinweis
  • DeepGreen-ID: 0c728bb35273489cad4cfb99ec9d1145 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Dr. Helmut Legerlotz-Stiftung |
  2. Technische Universität München |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Dr. Helmut Legerlotz-Stiftung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Technische Universität München |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6505733.rdf
1000 Erstellt am 2025-02-06T08:38:06.418+0100
1000 Erstellt von 322
1000 beschreibt frl:6505733
1000 Zuletzt bearbeitet 2025-09-13T11:10:48.199+0200
1000 Objekt bearb. Sat Sep 13 11:10:48 CEST 2025
1000 Vgl. frl:6505733
1000 Oai Id
  1. oai:frl.publisso.de:frl:6505733 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source