Download
00432_2024_Article_5673.pdf 511,05KB
WeightNameValue
1000 Titel
  • Large language models as decision aids in neuro-oncology: a review of shared decision-making applications
1000 Autor/in
  1. Lawson McLean, Aaron |
  2. Wu, Yonghui |
  3. Lawson McLean, Anna |
  4. Christidis, Evangelos |
1000 Verlag
  • Springer Berlin Heidelberg
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-03-19
1000 Erschienen in
1000 Quellenangabe
  • 150(3):139
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s00432-024-05673-x |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951032/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>Shared decision-making (SDM) is crucial in neuro-oncology, fostering collaborations between patients and healthcare professionals to navigate treatment options. However, the complexity of neuro-oncological conditions and the cognitive and emotional burdens on patients present significant barriers to achieving effective SDM. This discussion explores the potential of large language models (LLMs) such as OpenAI's ChatGPT and Google's Bard to overcome these barriers, offering a means to enhance patient understanding and engagement in their care. LLMs, by providing accessible, personalized information, could support but not supplant the critical insights of healthcare professionals. The hypothesis suggests that patients, better informed through LLMs, may participate more actively in their treatment choices. Integrating LLMs into neuro-oncology requires navigating ethical considerations, including safeguarding patient data and ensuring informed consent, alongside the judicious use of AI technologies. Future efforts should focus on establishing ethical guidelines, adapting healthcare workflows, promoting patient-oriented research, and developing training programs for clinicians on the use of LLMs. Continuous evaluation of LLM applications will be vital to maintain their effectiveness and alignment with patient needs. Ultimately, this exploration contends that the thoughtful integration of LLMs into SDM processes could significantly enhance patient involvement and strengthen the patient-physician relationship in neuro-oncology care.</jats:p>
1000 Sacherschließung
lokal Healthcare integration
lokal Language [MeSH]
lokal Patient Participation [MeSH]
lokal Humans [MeSH]
lokal Informed Consent [MeSH]
lokal Decision Support Techniques [MeSH]
lokal Large language models
lokal Ethical considerations
lokal Neuro-oncology care
lokal Patient engagement
lokal Review
lokal Shared decision making
lokal Health Personnel [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0001-5528-6905|https://orcid.org/0000-0002-6780-6135|https://orcid.org/0000-0002-3146-4241|https://orcid.org/0000-0001-8679-4988
1000 Hinweis
  • DeepGreen-ID: 4481c97010364544a6811649d31e31f8 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. National Institute on Aging |
  2. Patient-Centered Outcomes Research Institute |
  3. Friedrich-Schiller-Universität Jena |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer National Institute on Aging |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Patient-Centered Outcomes Research Institute |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Friedrich-Schiller-Universität Jena |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6505960.rdf
1000 Erstellt am 2025-02-06T09:33:38.629+0100
1000 Erstellt von 322
1000 beschreibt frl:6505960
1000 Zuletzt bearbeitet 2025-07-30T12:20:28.672+0200
1000 Objekt bearb. Wed Jul 30 12:20:28 CEST 2025
1000 Vgl. frl:6505960
1000 Oai Id
  1. oai:frl.publisso.de:frl:6505960 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source