Download
40170_2024_Article_358.pdf 4,49MB
WeightNameValue
1000 Titel
  • Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors
1000 Autor/in
  1. Ustjanzew, Arsenij |
  2. Nedwed, Annekathrin Silvia |
  3. Sandhoff, Roger |
  4. Faber, Jörg |
  5. Marini, Federico |
  6. Paret, Claudia |
1000 Verlag BioMed Central
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-10-24
1000 Erschienen in
1000 Quellenangabe
  • 12(1):29
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1186/s40170-024-00358-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515559/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> <jats:p>Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards.</jats:p> </jats:sec><jats:sec> <jats:title>Methods</jats:title> <jats:p>In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, <jats:italic>MYCN</jats:italic> gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.</jats:p> </jats:sec>
1000 Sacherschließung
lokal GD2
lokal Ganglioneuroblastoma
lokal Glycosphingolipids
lokal Metabolic graph
lokal Ganglioside
lokal Research
lokal Ganglioneuroma
lokal Neuroblastoma
lokal Reaction activity score
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/VXN0amFuemV3LCBBcnNlbmlq|https://frl.publisso.de/adhoc/uri/TmVkd2VkLCBBbm5la2F0aHJpbiBTaWx2aWE=|https://frl.publisso.de/adhoc/uri/U2FuZGhvZmYsIFJvZ2Vy|https://frl.publisso.de/adhoc/uri/RmFiZXIsIErDtnJn|https://frl.publisso.de/adhoc/uri/TWFyaW5pLCBGZWRlcmljbw==|https://frl.publisso.de/adhoc/uri/UGFyZXQsIENsYXVkaWE=
1000 Hinweis
  • DeepGreen-ID: 6aa02daa0aea4e5e9bda09cb54d5d409 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Universitätsmedizin der Johannes Gutenberg-Universität Mainz |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universitätsmedizin der Johannes Gutenberg-Universität Mainz |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6506052.rdf
1000 Erstellt am 2025-02-06T10:00:58.774+0100
1000 Erstellt von 322
1000 beschreibt frl:6506052
1000 Zuletzt bearbeitet 2025-09-14T00:10:52.255+0200
1000 Objekt bearb. Sun Sep 14 00:10:52 CEST 2025
1000 Vgl. frl:6506052
1000 Oai Id
  1. oai:frl.publisso.de:frl:6506052 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source