Download
41531_2024_Article_712.pdf 2,05MB
WeightNameValue
1000 Titel
  • Progression subtypes in Parkinson’s disease identified by a data-driven multi cohort analysis
1000 Autor/in
  1. Hähnel, Tom |
  2. Raschka, Tamara |
  3. Sapienza, Stefano |
  4. Klucken, Jochen |
  5. Glaab, Enrico |
  6. corvol, jean-christophe |
  7. Falkenburger, Bjoern |
  8. Fröhlich, Holger |
1000 Verlag
  • Nature Publishing Group UK
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-02
1000 Erschienen in
1000 Quellenangabe
  • 10(1):95
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1038/s41531-024-00712-3 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066039/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:p>The progression of Parkinson’s disease (PD) is heterogeneous across patients, affecting counseling and inflating the number of patients needed to test potential neuroprotective treatments. Moreover, disease subtypes might require different therapies. This work uses a data-driven approach to investigate how observed heterogeneity in PD can be explained by the existence of distinct PD progression subtypes. To derive stable PD progression subtypes in an unbiased manner, we analyzed multimodal longitudinal data from three large PD cohorts and performed extensive cross-cohort validation. A latent time joint mixed-effects model (LTJMM) was used to align patients on a common disease timescale. Progression subtypes were identified by variational deep embedding with recurrence (VaDER). In each cohort, we identified a fast-progressing and a slow-progressing subtype, reflected by different patterns of motor and non-motor symptoms progression, survival rates, treatment response, features extracted from DaTSCAN imaging and digital gait assessments, education, and Alzheimer’s disease pathology. Progression subtypes could be predicted with ROC-AUC up to 0.79 for individual patients when a one-year observation period was used for model training. Simulations demonstrated that enriching clinical trials with fast-progressing patients based on these predictions can reduce the required cohort size by 43%. Our results show that heterogeneity in PD can be explained by two distinct subtypes of PD progression that are stable across cohorts. These subtypes align with the brain-first vs. body-first concept, which potentially provides a biological explanation for subtype differences. Our predictive models will enable clinical trials with significantly lower sample sizes by enriching fast-progressing patients.</jats:p>
1000 Sacherschließung
lokal /692/53
lokal /692/308/2779/109
lokal Article
lokal /692/699/375/1718
lokal /692/617/375/1718
lokal article
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-4254-2399|https://orcid.org/0000-0003-2332-6137|https://orcid.org/0000-0002-0917-6454|https://orcid.org/0000-0001-6645-9437|https://orcid.org/0000-0003-3977-7469|https://orcid.org/0000-0001-7325-0199|https://orcid.org/0000-0002-2387-526X|https://orcid.org/0000-0002-5328-1243
1000 Hinweis
  • DeepGreen-ID: 742be6888e86422ab994918b899e3f44 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Bundesministerium für Bildung und Forschung |
  2. Fonds National de la Recherche Luxembourg |
  3. Agence Nationale de la Recherche |
1000 Fördernummer
  1. -
  2. -
  3. -
1000 Förderprogramm
  1. -
  2. -
  3. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Bundesministerium für Bildung und Forschung |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fonds National de la Recherche Luxembourg |
    1000 Förderprogramm -
    1000 Fördernummer -
  3. 1000 joinedFunding-child
    1000 Förderer Agence Nationale de la Recherche |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6506168.rdf
1000 Erstellt am 2025-02-06T10:21:56.941+0100
1000 Erstellt von 322
1000 beschreibt frl:6506168
1000 Zuletzt bearbeitet 2025-07-30T13:53:24.928+0200
1000 Objekt bearb. Wed Jul 30 13:53:24 CEST 2025
1000 Vgl. frl:6506168
1000 Oai Id
  1. oai:frl.publisso.de:frl:6506168 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source