Download
11548_2024_Article_3181.pdf 4,38MB
WeightNameValue
1000 Titel
  • Improving assessment of lesions in longitudinal CT scans: a bi-institutional reader study on an AI-assisted registration and volumetric segmentation workflow
1000 Autor/in
  1. Hering, Alessa |
  2. Westphal, Max |
  3. Gerken, Annika |
  4. Almansour, Haidara |
  5. Maurer, Michael |
  6. Geisler, Benjamin |
  7. Kohlbrandt, Temke |
  8. Eigentler, Thomas |
  9. Amaral, Teresa |
  10. Lessmann, Nikolas |
  11. Gatidis, Sergios |
  12. Hahn, Horst |
  13. Nikolaou, Konstantin |
  14. Othman, Ahmed |
  15. Moltz, Jan |
  16. Peisen, Felix |
1000 Verlag Springer International Publishing
1000 Erscheinungsjahr 2024
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2024-05-30
1000 Erschienen in
1000 Quellenangabe
  • 19(9):1689-1697
1000 Copyrightjahr
  • 2024
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s11548-024-03181-4 |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365847/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title><jats:sec> <jats:title>Purpose</jats:title> <jats:p>AI-assisted techniques for lesion registration and segmentation have the potential to make CT-based tumor follow-up assessment faster and less reader-dependent. However, empirical evidence on the advantages of AI-assisted volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans is lacking. The aim of this study was to assess the efficiency, quality, and inter-reader variability of an AI-assisted workflow for volumetric segmentation of lymph node and soft tissue metastases in follow-up CT scans. Three hypotheses were tested: (H1) Assessment time for follow-up lesion segmentation is reduced using an AI-assisted workflow. (H2) The quality of the AI-assisted segmentation is non-inferior to the quality of fully manual segmentation. (H3) The inter-reader variability of the resulting segmentations is reduced with AI assistance.</jats:p> </jats:sec><jats:sec> <jats:title>Materials and methods</jats:title> <jats:p>The study retrospectively analyzed 126 lymph nodes and 135 soft tissue metastases from 55 patients with stage IV melanoma. Three radiologists from two institutions performed both AI-assisted and manual segmentation, and the results were statistically analyzed and compared to a manual segmentation reference standard.</jats:p> </jats:sec><jats:sec> <jats:title>Results</jats:title> <jats:p>AI-assisted segmentation reduced user interaction time significantly by 33% (222 s vs. 336 s), achieved similar Dice scores (0.80–0.84 vs. 0.81–0.82) and decreased inter-reader variability (median Dice 0.85–1.0 vs. 0.80–0.82; ICC 0.84 vs. 0.80), compared to manual segmentation.</jats:p> </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> <jats:p>The findings of this study support the use of AI-assisted registration and volumetric segmentation for lymph node and soft tissue metastases in follow-up CT scans. The AI-assisted workflow achieved significant time savings, similar segmentation quality, and reduced inter-reader variability compared to manual segmentation.</jats:p> </jats:sec>
1000 Sacherschließung
lokal Observer Variation [MeSH]
lokal Longitudinal CT scans
lokal Workflow [MeSH]
lokal Humans [MeSH]
lokal Retrospective Studies [MeSH]
lokal Tomography, X-Ray Computed/methods [MeSH]
lokal Radiographic Image Interpretation, Computer-Assisted/methods [MeSH]
lokal Oncology
lokal Artificial Intelligence [MeSH]
lokal Original Article
lokal Lymphatic Metastasis/diagnostic imaging [MeSH]
lokal Neoplasm Staging [MeSH]
lokal Melanoma/diagnostic imaging [MeSH]
lokal Image registration
lokal AI-assisted reading
lokal Skin Neoplasms/diagnostic imaging [MeSH]
lokal Lesion segmentation
lokal Soft Tissue Neoplasms/diagnostic imaging [MeSH]
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://orcid.org/0000-0002-7602-803X|https://frl.publisso.de/adhoc/uri/V2VzdHBoYWwsIE1heA==|https://frl.publisso.de/adhoc/uri/R2Vya2VuLCBBbm5pa2E=|https://frl.publisso.de/adhoc/uri/QWxtYW5zb3VyLCBIYWlkYXJh|https://frl.publisso.de/adhoc/uri/TWF1cmVyLCBNaWNoYWVs|https://frl.publisso.de/adhoc/uri/R2Vpc2xlciwgQmVuamFtaW4=|https://frl.publisso.de/adhoc/uri/S29obGJyYW5kdCwgVGVta2U=|https://frl.publisso.de/adhoc/uri/RWlnZW50bGVyLCBUaG9tYXM=|https://frl.publisso.de/adhoc/uri/QW1hcmFsLCBUZXJlc2E=|https://frl.publisso.de/adhoc/uri/TGVzc21hbm4sIE5pa29sYXM=|https://frl.publisso.de/adhoc/uri/R2F0aWRpcywgU2VyZ2lvcw==|https://frl.publisso.de/adhoc/uri/SGFobiwgSG9yc3Q=|https://frl.publisso.de/adhoc/uri/Tmlrb2xhb3UsIEtvbnN0YW50aW4=|https://frl.publisso.de/adhoc/uri/T3RobWFuLCBBaG1lZA==|https://frl.publisso.de/adhoc/uri/TW9sdHosIEphbg==|https://frl.publisso.de/adhoc/uri/UGVpc2VuLCBGZWxpeA==
1000 Hinweis
  • DeepGreen-ID: a1529f9f1b724399aedef24f8126a037 ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Fraunhofer-Institut für Digitale Medizin MEVIS |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Fraunhofer-Institut für Digitale Medizin MEVIS |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6506315.rdf
1000 Erstellt am 2025-02-06T10:51:36.950+0100
1000 Erstellt von 322
1000 beschreibt frl:6506315
1000 Zuletzt bearbeitet 2025-09-12T16:27:54.332+0200
1000 Objekt bearb. Fri Sep 12 16:27:54 CEST 2025
1000 Vgl. frl:6506315
1000 Oai Id
  1. oai:frl.publisso.de:frl:6506315 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source