Download
12021_2025_Article_9698.pdf 5,27MB
WeightNameValue
1000 Titel
  • Determination of the Time-frequency Features for Impulse Components in EEG Signals
1000 Autor/in
  1. Filimonova, Natalia |
  2. Specovius-Neugebauer, Maria |
  3. Friedmann, Elfriede |
1000 Verlag Springer US
1000 Erscheinungsjahr 2025
1000 Publikationstyp
  1. Artikel |
1000 Online veröffentlicht
  • 2025-01-23
1000 Erschienen in
1000 Quellenangabe
  • 23(2):17
1000 Copyrightjahr
  • 2025
1000 Lizenz
1000 Verlagsversion
  • https://doi.org/10.1007/s12021-024-09698-y |
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757888/ |
1000 Publikationsstatus
1000 Begutachtungsstatus
1000 Sprache der Publikation
1000 Abstract/Summary
  • <jats:title>Abstract</jats:title> <jats:p>Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system’s ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.</jats:p>
1000 Sacherschließung
lokal Female [MeSH]
lokal Emotions/physiology [MeSH]
lokal Adult [MeSH]
lokal Electroencephalography/methods [MeSH]
lokal Humans [MeSH]
lokal Brain/physiology [MeSH]
lokal Krawtchouk functions
lokal Wavelet Analysis [MeSH]
lokal Time Factors [MeSH]
lokal Visual system
lokal EEG processing
lokal Blinking/physiology [MeSH]
lokal Signal Processing, Computer-Assisted [MeSH]
lokal Male [MeSH]
lokal Research
lokal Young Adult [MeSH]
lokal Wavelet analysis
1000 Fächerklassifikation (DDC)
1000 Liste der Beteiligten
  1. https://frl.publisso.de/adhoc/uri/RmlsaW1vbm92YSwgTmF0YWxpYQ==|https://frl.publisso.de/adhoc/uri/U3BlY292aXVzLU5ldWdlYmF1ZXIsIE1hcmlh|https://frl.publisso.de/adhoc/uri/RnJpZWRtYW5uLCBFbGZyaWVkZQ==
1000 Hinweis
  • DeepGreen-ID: 0686d74a41204a8a8978e7d8bb3d8f6a ; metadata provieded by: DeepGreen (https://www.oa-deepgreen.de/api/v1/), LIVIVO search scope life sciences (http://z3950.zbmed.de:6210/livivo), Crossref Unified Resource API (https://api.crossref.org/swagger-ui/index.html), to.science.api (https://frl.publisso.de/), ZDB JSON-API (beta) (https://zeitschriftendatenbank.de/api/), lobid - Dateninfrastruktur für Bibliotheken (https://lobid.org/resources/search)
1000 Label
1000 Förderer
  1. Deutsche Forschungsgemeinschaft |
  2. Universität Kassel |
1000 Fördernummer
  1. -
  2. -
1000 Förderprogramm
  1. -
  2. -
1000 Dateien
1000 Förderung
  1. 1000 joinedFunding-child
    1000 Förderer Deutsche Forschungsgemeinschaft |
    1000 Förderprogramm -
    1000 Fördernummer -
  2. 1000 joinedFunding-child
    1000 Förderer Universität Kassel |
    1000 Förderprogramm -
    1000 Fördernummer -
1000 Objektart article
1000 Beschrieben durch
1000 @id frl:6506568.rdf
1000 Erstellt am 2025-02-06T11:38:37.003+0100
1000 Erstellt von 322
1000 beschreibt frl:6506568
1000 Zuletzt bearbeitet 2025-09-13T10:24:20.562+0200
1000 Objekt bearb. Sat Sep 13 10:24:20 CEST 2025
1000 Vgl. frl:6506568
1000 Oai Id
  1. oai:frl.publisso.de:frl:6506568 |
1000 Sichtbarkeit Metadaten public
1000 Sichtbarkeit Daten public
1000 Gegenstand von

View source